
Mcaster Manual

Professional modular system for TV signal processing

Flussonic

© Flussonic 2025

Table of contents

31. Products

31.1 Mcaster - Professional TV Signal Processing System

62. Manual

62.1 Installing mcaster appliance

102.2 Appliance Operating System

133. Modules

133.1 MPEGTS Reader

193.2 T2MI Reader

203.3 ASI Reader

243.4 SDI Coder

303.5 HDMI Encoder

333.6 SRT Reader

383.7 DVB Reader

433.8 DVB-WebVTT

463.9 DVR

503.10 RTMP Reader

523.11 LiveStreamInput (LSI)

563.12 Transcoder

653.13 SCTE Processor

683.14 SDI Decoder

713.15 ASI Push

733.16 Multiplexer

773.17 TwinCast Recovery

813.18 RTMP Pusher

833.19 SRT Egress

873.20 OTT Packager

933.21 QAM Output

953.22 Qprober

1014. Standards

1014.1 TR 101 290

1034.2 Digital TV broadcasting

Table of contents

- 2/105 - © Flussonic 2025

1. Products

1.1 Mcaster - Professional TV Signal Processing System

1.1.1 Overview

Mcaster is a professional solution for processing television signals, proven by 10 years of deployment experience in various broadcasting

environments. The system represents a comprehensive solution for receiving, processing, transcoding, and distributing TV content with the highest

level of reliability and quality.

1.1.2 Modular Architecture

Mcaster is built on the principles of modular architecture, which provides configuration flexibility and scalability for specific tasks. The system

consists of specialized components, each responsible for a specific signal processing function:

Main Modules

SIGNAL CAPTURE AND RECEPTION

SDI Coder — video and audio capture through SDI cards (Dektec, Blackmagic, V4L)

ASI Reader — ASI flow reception with Dektec, Streamlabs, Softlab support

SRT Reader — SRT protocol publication reception with minimal delay

PROCESSING AND MANAGEMENT

LiveStreamInput (LSI) — automatic switching between primary and backup sources

SCTE Processor — SCTE35/SCTE104 advertising marker processing with automatic compensation

DVB-WebVTT — DVB subtitle recognition and conversion to WebVTT

TRANSCODING AND ADAPTATION

Transcoder — transcoding for DVB (CBR) and OTT (MBR) with H.264/H.265 support

Multiplexer — transport flow formation

Format adapters — conversion between various broadcasting standards

Modular Architecture Advantages

Configuration flexibility — selection of only necessary components

Scalability — adding modules as needs grow

Reliability — function isolation, reduced failure risk

Easy maintenance — independent module updates and diagnostics

Specialization — optimization of each module for specific tasks

1.1.3 Built-in Monitoring

A special advantage of Mcaster is the built-in monitoring system, which provides detailed analysis of incoming flows at a level unavailable to other

solutions on the market.

Monitoring Capabilities

FLOW ANALYSIS

Detailed statistics of each module in real time

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1. Products

- 3/105 - © Flussonic 2025

Signal quality metrics with frame-level accuracy

Bitrate analysis and encoding parameters

Delay monitoring and synchronization

SPECIALIZED METRICS

SRT parameters — RTT, latency, retransmitted_packets

LSI statistics — source switching, time on backups

SCTE metrics — advertising marker processing

OCR quality — subtitle recognition accuracy

DIAGNOSTICS AND ALERTS

Automatic problem detection and anomalies

Failure prediction potential failures

Detailed reporting for trend analysis

Integration with external monitoring systems

Built-in Monitoring Advantages

Analysis depth — unavailable to third-party solutions

Real time — instant response to changes

Proactivity — preventing problems before they occur

Optimization — continuous broadcasting quality improvement

1.1.4 Deployment Options

Mcaster is available in three different deployment options, allowing you to choose the optimal solution for any infrastructure:

1. Standalone Linux Program

Application: Integration into existing infrastructure - Flexibility — installation on any compatible system - Cost-effectiveness — use of existing

equipment - Integration — work with existing monitoring systems - Scalability — clustering capability

2. Server Firmware

Application: Turnkey solution - Easy deployment — automatic OS and software installation - Optimization — system configured for specific tasks -

Security — isolated execution environment - Reliability — proven configuration

3. Hardware-Software Complex

Application: Maximum reliability and performance - Refined equipment — tested servers and capture cards - Guaranteed compatibility — all

components tested - Technical support — comprehensive maintenance - Performance — configuration optimized for tasks

1.1.5 Application Areas

Television Broadcasting

Terrestrial broadcasting — flow preparation for DVB-T/T2/S

Cable TV — signal processing for cable networks

Satellite broadcasting — content adaptation for satellite channels

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.1.4 Deployment Options

- 4/105 - © Flussonic 2025

OTT and Internet Broadcasting

Adaptive flows — HLS, DASH for various devices

Multi-bitrate — optimization for connection quality

Global distribution — content delivery worldwide

Professional Applications

Studio broadcasting — real-time signal processing

Mobile applications — streaming for smartphones and tablets

Corporate networks — internal broadcasting in organizations

1.1.6 Mcaster Advantages

Reliability

10-year experience of deployments in various conditions

Proven architecture — thousands of successful installations

Fault tolerance — automatic switching to backups

Stability — continuous operation in critical conditions

Quality

Professional algorithms for signal processing

High accuracy of synchronization and encoding

Optimization for various content types

Compatibility with international standards

Efficiency

Modular architecture — use of only necessary components

Optimized performance — minimal resource consumption

Automation — reduced manual intervention

Scalability — growth with needs

1.1.7 Conclusion

Mcaster represents a professional solution for processing television signals, combining proven reliability, modular architecture, and unique

monitoring capabilities. 10 years of deployment experience and thousands of successful installations make it the choice of broadcasting

professionals.

The flexibility of deployment options allows adapting the solution to any infrastructure, while built-in monitoring provides quality control at a level

unavailable to competitive solutions. Mcaster is not just software, it is a comprehensive solution for professional broadcasting.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.1.6 Mcaster Advantages

- 5/105 - © Flussonic 2025

2. Manual

2.1 Installing mcaster appliance

2.1.1 Installation Process Overview

Installing mcaster in appliance mode is a fully automated process that requires no human intervention after initial setup. We provide a ready-made

filesystem image that contains the installer and all necessary components for system deployment.

Mcaster can be installed in two ways: as our software appliance that runs on standard server hardware, or by reinstalling firmware on our PAK

(Professional Appliance Kit) dedicated hardware. The appliance installation involves creating a bootable media and following an automated

installation process, while PAK installation requires downloading and installing the latest firmware through the PAK management interface.

2.1.2 Obtaining the Installer Image

Requesting the Image

To obtain the installer image, you need to contact our technical support. Upon request, we provide:

Filesystem image link - ready ISO image for USB recording

Recording instructions - recommendations for creating a bootable USB drive

Configuration documentation - description of configuration parameters

USB Drive Requirements

Capacity: minimum 4 GB (8 GB recommended)

Format: FAT32 or exFAT

Speed: USB 3.0 or higher

2.1.3 Installation Preparation

Recording the Image to USB

Download the image - download the provided ISO file

Record the image - use specialized utilities:

Windows: Rufus, Win32 Disk Imager

macOS: Etcher, Disk Utility

Linux: dd, Etcher

Configuring Installation Parameters

Before installation, you can configure the parameters of the future appliance by editing the autoinstall.txt file on the USB drive.

2.1.4 autoinstall.txt Configuration File

File Structure

The autoinstall.txt file contains configuration variables in KEY=VALUE format:

•

•

•

•

•

•

1.

2.

3.

4.

5.

Example of recording image in Linux
sudo dd if=mcaster-installer.iso of=/dev/sdX bs=4M status=progress

License key
LICENSE=your-license-key-here

2. Manual

- 6/105 - © Flussonic 2025

Configuration Parameters

Recommended Settings

2.1.5 Installation Process

Booting from USB

Insert USB drive into the server

Configure BIOS/UEFI to boot from USB (usually F2, F12, or Del)

Select USB drive in boot menu

Wait for installer to load

Automatic Installation

After booting from USB, a fully automatic installation occurs:

Initialization - loading installer into memory

Hardware scanning - determining server configuration

Disk erasure - complete cleaning of system hard drive

Partition layout - creating partitions according to settings

System installation - copying filesystem images

Configuration setup - applying parameters from autoinstall.txt

Reboot - automatic restart into new system

Timeframes

Installer loading: 1-2 minutes

Administrator credentials
EDIT_AUTH=admin:securepassword

API key for centralized management
CENTRAL_API_KEY=your-api-key-here

Configuration partition size (in MB)
SIZE_SETTINGS=200

Log partition size (in MB)
SIZE_VAR=4096

Parameter Description Required Example

LICENSE License key for mcaster Yes LICENSE=MC-XXXX-XXXX-XXXX

EDIT_AUTH Administrator login and password Yes EDIT_AUTH=admin:mypassword

CENTRAL_API_KEY API key for centralized management No CENTRAL_API_KEY=api-key-123

SIZE_SETTINGS Size of /etc partition in MB No SIZE_SETTINGS=200

SIZE_VAR Size of /var partition in MB No SIZE_VAR=4096

Minimal configuration
LICENSE=your-license-key
EDIT_AUTH=admin:complex-password-123

Extended configuration
LICENSE=your-license-key
EDIT_AUTH=admin:complex-password-123
CENTRAL_API_KEY=your-central-api-key
SIZE_SETTINGS=500
SIZE_VAR=8192

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

7.

•

2.1.5 Installation Process

- 7/105 - © Flussonic 2025

Disk erasure: 5-15 minutes (depends on disk size and speed)

System installation: 10-20 minutes

Total time: 15-40 minutes

2.1.6 Security and Recommendations

⚠ Important Warning

WARNING: Booting from USB drive on a production server will result in complete data erasure and system reinstallation. This is not considered a fatal

problem since production server configurations should be entered into a centralized management system.

Recommended Secure Method

For maximum security, it is recommended to specify in autoinstall.txt :

License key (LICENSE)

Administrator credentials (EDIT_AUTH)

This ensures:

Automatic activation - server doesn't remain on network waiting for license input

Immediate availability - system is ready to work immediately after installation

Security - elimination of manual input of sensitive data

Installation Preparation

Backup - save important data from server

Document configuration - record current settings

Check compatibility - ensure compliance with system requirements

Prepare network - configure network connection for update downloads

2.1.7 Post-Installation Setup

First Boot

After installation, the system automatically:

Applies license - activates mcaster

Configures network - obtains IP address via DHCP

Creates administrator - sets up credentials

Connects to centralized management (if API key is specified)

System Access

Web interface: http://server-IP-address

SSH access: ssh admin@server-IP-address

Login/password: specified in EDIT_AUTH

Installation Verification

Check web interface - accessibility of control panel

Check license - activation status in system

Check logs - absence of critical errors

•

•

•

•

•

•

•

•

1.

2.

3.

4.

•

•

•

•

•

•

•

1.

2.

3.

2.1.6 Security and Recommendations

- 8/105 - © Flussonic 2025

Check network - accessibility of external resources

2.1.8 Troubleshooting

Common Issues

Installation Logs

In case of installation problems, logs are saved in:

USB drive: /logs/install.log

Screen: display of installation process

Network: sending logs to central server (if configured)

2.1.9 Conclusion

Installing mcaster appliance is a simple and reliable process that ensures rapid system deployment with minimal human intervention. Automatic

installation guarantees configuration reproducibility and reduces the likelihood of deployment errors.

4.

Problem Solution

Won't boot from USB Check BIOS/UEFI settings

Image recording error Use different USB drive

Can't read autoinstall.txt Check file format (UTF-8)

License error Check key correctness

Network issues Check cables and DHCP settings

•

•

•

2.1.8 Troubleshooting

- 9/105 - © Flussonic 2025

2.2 Appliance Operating System

2.2.1 Architecture Overview

Our infrastructure media appliance uses a specially developed operating system built on Linux with a number of key modifications to ensure

maximum security, reliability, and efficiency.

InfraMedia OS is provided as the base operating system in our appliance and PAK (Professional Appliance Kit) hardware deliveries. This specialized

OS is pre-configured and optimized for media server operations, ensuring consistent performance and security across all deployment scenarios.

2.2.2 Minimal Package Set

Minimalism Principle

We independently compile a minimal set of packages for the operating system, which allows:

Minimize attack surface - fewer packages mean fewer potential vulnerabilities

Reduce firmware size - compact system loads faster and takes up less space

Improve stability - excluding unnecessary components reduces the likelihood of conflicts

Simplify support - fewer components are easier to test and update

Build Process

Dependency analysis - thorough analysis of necessary components for media server operation

Source compilation - building packages from verified source codes

Security validation - checking each package for known vulnerabilities

Size optimization - removing unnecessary files and compressing components

2.2.3 File System Images

Readonly Architecture

After installing the minimal package set, we create readonly file system images:

Immutability - file system is protected from accidental changes

Integrity - impossibility of modifying system files

Reproducibility - identical images for all devices

Linux Kernel Modification

Our Linux kernel is modified to work with file system images instead of traditional installation:

Image support - kernel can mount and work with FS images

Partition management - special drivers for working with image partitions

Performance optimization - fast loading and working with images

2.2.4 Additional Software Installation

Installation Mechanism

Additional software is installed by copying new file system images to a separate partition:

•

•

•

•

1.

2.

3.

4.

•

•

•

•

•

•

┌─────────────────┐
│ System │
│ partition │

2.2 Appliance Operating System

- 10/105 - © Flussonic 2025

Approach Advantages

Isolation - additional software does not affect the main system

Versioning - each software version is stored in a separate image

Rapid deployment - copying image instead of installation

Change rollback - ability to return to previous version

2.2.5 Update System

Safe Updates

System updates occur by loading a new image without overwriting the old one:

Loading new image - new image is loaded to a separate partition

Validation - checking integrity and compatibility of the new image

Switching - changing boot parameters to use the new image

Testing - checking functionality after update

Rollback Mechanism

If something goes wrong during the update, the system can automatically or manually rollback to the previous configuration:

Preserving previous versions - old images remain available

Fast rollback - switching to previous image takes seconds

Automatic recovery - system can automatically rollback on critical errors

Update System Advantages

Reliability - impossibility to "break" the system during updates

Minimal downtime - fast updates and rollbacks

Production testing - ability to safely test new versions

Version history - preserving all previous versions for analysis

2.2.6 Security

Multi-level Protection

Our architecture provides several levels of security:

Minimal attack surface - only necessary components

Readonly file system - protection from system file modification

Component isolation - separation of system and applications

Version control - ability to quickly rollback when vulnerabilities are detected

│ (readonly) │
├─────────────────┤
│ User │
│ partition │
│ (readwrite) │
├─────────────────┤
│ Software │
│ partition │
│ (FS images) │
└─────────────────┘

•

•

•

•

1.

2.

3.

4.

•

•

•

•

•

•

•

1.

2.

3.

4.

2.2.5 Update System

- 11/105 - © Flussonic 2025

Monitoring and Auditing

Logging all changes - complete history of modifications

Integrity verification - checksums for all images

Automatic anomaly detection - monitoring unusual activity

2.2.7 Conclusion

Our appliance's operating system represents a highly optimized solution that provides maximum security, reliability, and efficiency for infrastructure

media applications. Using file system images, minimal package sets, and secure update systems makes our solution ideal for critical production

environments.

•

•

•

2.2.7 Conclusion

- 12/105 - © Flussonic 2025

3. Modules

3.1 MPEGTS Reader

3.1.1 Overview

MPEGTS Reader is the most important module of Mcaster that allows receiving MPEG transport streams in both SPTS (Single Program Transport

Stream) and MPTS (Multiple Program Transport Stream) modes. The module provides complete processing of transport streams with automatic

extraction of metadata and content.

3.1.2 Operating Principles

Complete Stream Processing

When receiving, the stream is completely parsed down to frames, the entire transport container is unpacked. This is a fundamental difference from

remultiplexers that leave MPEGTS and PES packaging with all their problems.

Automatic Metadata Extraction

The module automatically extracts and processes:

SDT (Service Description Table) — information about channels and providers

EPG (Electronic Program Guide) — program guide

PAT/PMT — program tables

PES packets — elementary streams

Demultiplexing

For MPTS streams, the module performs:

Automatic detection of programs in the stream

Extraction of selected programs by number

PID filtering for processing optimization

Preservation of synchronization between streams

3.1.3 Configuration

Basic SPTS Stream

The simplest configuration example for receiving SPTS:

MPTS Stream with Demultiplexing

For receiving MPTS, demultiplexing needs to be specifically requested:

Important: When using the mpts-udp protocol, the required multicast group will be received on the server only once, regardless of the number of

streams using this group. This ensures efficient use of network resources and prevents traffic duplication.

•

•

•

•

•

•

•

•

stream s {
 input udp://239.0.0.1:1234;
}

stream s {
 input mpts-udp://239.0.0.1:1234?programs=1050;
}

3. Modules

- 13/105 - © Flussonic 2025

Advanced Configuration

Configuration Parameters

3.1.4 Automatic Metadata Extraction

SDT (Service Description Table)

If SDT is present in the incoming stream, the following will be automatically extracted:

Channel name — display name of the program

Provider name — information about the broadcasting company

Service type — type of content (TV, radio, data)

Country and language — regional information

EPG (Electronic Program Guide)

If EPG is present in the stream, it will automatically:

Be parsed — extraction of structured data

Be available for further packaging on output

Be provided for reading via JSON API

Be cached for fast access

3.1.5 Filtering and Optimization

PID Filtering

The pids option allows filtering incoming PIDs:

Filtering Benefits

Reduced processor load

Memory savings — processing only needed streams

Improved quality — excluding problematic PIDs

Network optimization — transmitting only necessary content

stream main_channel {
 input mpts-udp://239.0.0.1:1234?programs=1050,1051 pids=100,101,102;
}

Parameter Description Required Example

udp:// UDP protocol Yes udp://239.0.0.1:1234

mpts-udp:// MPTS protocol Yes mpts-udp://239.0.0.1:1234

programs Program numbers No programs=1050,1051

pids PID filter No pids=100,101,102

•

•

•

•

•

•

•

•

Excluding unnecessary audio tracks
stream filtered {
 input mpts-udp://239.0.0.1:1234?programs=1050 pids=100,101,102;
}

Excluding teletext
stream no_teletext {
 input mpts-udp://239.0.0.1:1234?programs=1050 pids=100,101,102,103;
}

•

•

•

•

3.1.4 Automatic Metadata Extraction

- 14/105 - © Flussonic 2025

3.1.6 Automation

Minimal Configuration

The number of various settings is maximally reduced to relieve administrators of problems. All functionality is enabled automatically:

Auto-detection of stream type (SPTS/MPTS)

Auto-extraction of metadata

Auto-parsing of EPG data

Auto-optimization of processing

Smart Processing

The module automatically:

Determines structure of incoming stream

Selects optimal processing parameters

Adapts to changes in the stream

Recovers after errors

3.1.7 API and Interfaces

3.1.8 Monitoring and Diagnostics

Key Metrics

Diagnostic Parameters

BASIC STREAM PARAMETERS

packets_received — number of received packets

packets_lost — lost packets

programs_detected — detected programs

sdt_found — presence of SDT table

epg_found — presence of EPG data

•

•

•

•

•

•

•

•

{
 "stats": {
 "input": {
 "pids": [
 {
 "pid": 1040,
 "pnr": 27,
 "packets": 125000,
 "frames": 5026,
 "empty_packets": 20,
 "errors_ts_scrambled": 70,
 "errors_ts_pmt": 10,
 "errors_ts_cc": 250,
 "dts_goes_backwards": 23
 }
]
 }
 }
}

•

•

•

•

•

3.1.6 Automation

- 15/105 - © Flussonic 2025

DETAILED PID PARAMETERS (STATS.INPUT.PIDS[0])

Basic metrics:

pid — stream identifier

pnr — program number

packets — number of packets

frames — number of frames

empty_packets — packets without payload and adaptation field

Transport stream errors:

errors_adaptation_broken — packets with adaptation field larger than packet size

errors_ts_scrambled — amount of scrambled TS packets

errors_ts_pmt — how many times PMT was not received after 0.5 seconds

errors_ts_cc — how many MPEG-TS packets were received with non-contiguous continuity counters

errors_ts_tei — how many MPEG-TS packets with Transport Error Indicator were received

errors_ts_psi_checksum — how many times have received PSI entry with broken checksum

errors_pid_lost — how many times pid has been lost

PES packet errors:

broken_pes_count — how many PES packets were started not from startcode

broken_pes_sum — how many bytes were discarded due to lack of PES startcode

Time corrections:

time_corrections — jumps of timestamps inside a MPEG-TS stream

repeated_frames — in case of CC error last frame can be repeated. This is a count of repeated frames

corrected_backward_pts — how many times PTS was less than PCR or previous PTS

pcr_resync — if PTS is drifting away from PCR, it can be resynchronized with PCR. This is a resync count

dts_goes_backwards — time on this PID jumped back from reference PTS and it was not a roll over zero

dts_jump_forward — time on this PID jumped forward too far away from reference PTS

too_large_dts_jump — jump of the PTS was so big from previous, that had to flush all frames and restart parsing

Buffering and discarding:

discarded_buffer_count — how many times was discarded too big ES buffer without making a frame of it

discarded_buffer_sum — how many bytes were lost due to discarding ES buffer

Service data:

fillers_count — how many H264(5) NAL fillers were seen in the input

fillers_sum — how many bytes were seen in NAL fillers

padding_pes_count — how many PES packets were on the Padding streamId

padding_pes_sum — how many bytes were in PES packets on the Padding streamId

Critical errors:

crashed — unhandled crashes inside mpegts decoding process

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.1.8 Monitoring and Diagnostics

- 16/105 - © Flussonic 2025

3.1.9 Usage Examples

Simple SPTS Reception

MPTS with Program Selection

Audio Filtering

Transcoder Integration

3.1.10 Troubleshooting

Common Problems

STREAM NOT RECEIVING

Check network settings — multicast address availability

Ensure correctness of program number for MPTS

Check format of incoming stream

Monitor module logs

MISSING METADATA

Check presence of SDT in incoming stream

Ensure correctness of EPG data

Check PID filtering settings

Wait for metadata updates

DEMULTIPLEXING PROBLEMS

Check program number in MPTS

Ensure stability of incoming stream

Check synchronization between streams

Monitor processing statistics

stream news_channel {
 input udp://239.0.0.1:1234;
}

stream main_program {
 input mpts-udp://239.0.0.1:1234?programs=1050;
}

stream secondary_program {
 input mpts-udp://239.0.0.1:1234?programs=1051;
}

stream russian_audio {
 input mpts-udp://239.0.0.1:1234?programs=1050&pids=100,101;
}

stream transcoded {
 input mpts-udp://239.0.0.1:1234?programs=1050;

 transcoder {
 video {
 codec h264;
 bitrate 5000k;
 }
 audio {
 codec aac;
 bitrate 128k;
 }
 }
}

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

3.1.9 Usage Examples

- 17/105 - © Flussonic 2025

Diagnostic Commands

3.1.11 Configuration Recommendations

Performance Optimization

Use PID filtering to reduce load

Configure buffer size for your streams

Monitor processing statistics

Plan redundancy for critical streams

Reception Quality

Check stability of network connection

Use quality network cables

Monitor packet loss in real-time

Configure timeouts for your network

Working with Metadata

Regularly check SDT relevance

Monitor EPG data updates

Use caching for fast access

Plan handling of metadata errors

3.1.12 Conclusion

MPEGTS Reader is a powerful and flexible module for receiving and processing MPEG transport streams. Automatic metadata extraction, smart

filtering, and minimal configuration make it an ideal solution for professional broadcasting. Support for both SPTS and MPTS modes ensures

universal application in various broadcasting scenarios.

Network traffic monitoring
tcpdump -i any -n host 239.0.0.1

Check stream metrics
curl -sS "http://localhost:8080/streamer/api/v3/streams/stream_name"

•

•

•

•

•

•

•

•

•

•

•

•

3.1.11 Configuration Recommendations

- 18/105 - © Flussonic 2025

3.2 T2MI Reader

The T2MI reader module allows decapsulating DVB-T2 network signals packaged in MPEG-TS, extracting PLP (Physical Layer Pipe) from them and

then processing it as regular MPTS.

3.2.1 Automatic Enable

The module is automatically enabled when using Mpegts Reader, no configuration is required for this.

3.2.2 Purpose

The module is necessary for local processing of broadcast signals, for example:

Regional advertising insertion

Local content modification

Extraction of individual services from multiplex

Analysis and monitoring of DVB-T2 streams

3.2.3 Technical Details

Detailed description of the T2MI protocol is contained in document TS 102 773, section 6.

Processing

The module performs the following operations:

Receiving MPEG-TS stream with DVB-T2 signal

Decoding T2MI (T2-MI) containers

Extracting PLP (Physical Layer Pipe) data

Forming standard MPEG-TS stream for further processing

Supported Formats

The module works with the following data types:

DVB-T2 signals

MPEG-TS containers

T2MI packaged streams

PLP (Physical Layer Pipe) data

3.2.4 Applications

T2MI reader is used in various scenarios:

Television broadcasting

Cable networks

Satellite broadcasting

Local content insertion

Signal quality monitoring

•

•

•

•

1.

2.

3.

4.

•

•

•

•

•

•

•

•

•

3.2 T2MI Reader

- 19/105 - © Flussonic 2025

3.3 ASI Reader

3.3.1 Overview

ASI Reader is a module in mcaster designed for receiving video from ASI (Asynchronous Serial Interface) capture cards. The module provides reliable

reception of MPTS (Multi-Program Transport Stream) flows and their transmission to multicast for further processing by other system components.

3.3.2 Supported Capture Cards

Dektec

Full support for all Dektec ASI models

Automatic signal parameter detection

Support for all ASI standards

Integration with Dektec SDK

Streamlabs

Limited support for Streamlabs cards

Basic ASI capture functions

V4L2 compatibility

Softlab

Limited support for Softlab cards

Basic ASI reception functions

V4L2 compatibility

3.3.3 Architecture

Operating Principle

ASI signal capture from the card

MPTS flow processing

Multicast transmission to the specified address

Capture by mpegts reader module for further processing

Connection Diagram

Importance of Multicast Architecture

Using multicast architecture is a necessary condition for ensuring streamer stability and independence from ASI card status. This provides:

Separation of responsibilities between capture and processing

Streamer independence from ASI card state

Component restart capability without interrupting the flow

Scalability — multiple consumers can receive one stream

Fault tolerance — when there are problems with the card, the streamer continues to work with buffered data

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

ASI Source → ASI Reader → Multicast → MPEGTS Reader → Processing

•

•

•

•

•

3.3 ASI Reader

- 20/105 - © Flussonic 2025

3.3.4 Module Configuration

Basic Configuration

Configuration Parameters

Extended Configuration

3.3.5 Card Serial Number Determination

Using DtInfoCL

To determine the Dektec card serial number, use the DtInfoCL utility:

Download DtInfoCL from the official Dektec website

Install the utility on the system

Run the command to view connected devices:

DtInfoCL Output Example

3.3.6 Integration with mpegts reader

Processing Chain Configuration

dvb_card asi_port_1 {
 hw dektec_asi;
 video_device 224.1.1.1:1000;
 serial 2174223642;
 port 1;
}

Parameter Description Required Example

hw Hardware type Yes dektec_asi

video_device Multicast group address Yes 224.1.1.1:1000

serial Card serial number Yes 2174223642

port Port number on the card Yes 1

dvb_card asi_port_1 {
 hw dektec_asi;
 video_device 224.1.1.1:1000;
 serial 2174223642;
 port 1;

 # Additional parameters
 buffer_size 8192;
 timeout 5000;
 retry_count 3;
}

1.

2.

3.

View all Dektec devices
dtinfocl --list-devices

Detailed information about a specific device
dtinfocl --device 0 --info

Device 0: DTA-2174B
 Serial Number: 2174223642
 Firmware Version: 2.1.3
 Ports: 4
 Status: Ready

ASI Reader - capture from card
dvb_card asi_port_1 {
 hw dektec_asi;

3.3.4 Module Configuration

- 21/105 - © Flussonic 2025

https://www.dektec.com/downloads/utilities/

3.3.7 Troubleshooting

Common Problems

CARD NOT DETECTED

Check ASI cable connection

Verify serial number correctness

Check Dektec drivers

Use DtInfoCL for diagnostics

NO SIGNAL IN MULTICAST

Check multicast group settings

Ensure port availability

Check network settings

Check module logs

BUFFER ERRORS

Increase buffer size

Check system performance

Optimize network settings

Diagnostic Commands

3.3.8 System Requirements

Hardware Requirements

CPU: Minimum 2 cores

RAM: 4 GB

Network: Gigabit Ethernet for multicast

ASI card: Supported Dektec/Streamlabs/Softlab model

Software Requirements

Linux kernel 4.19+

Dektec drivers (for Dektec cards)

V4L2 support (for Streamlabs/Softlab)

Multicast support in network

 video_device 224.1.1.1:1000;
 serial 2174223642;
 port 1;
}

MPEGTS Reader - reception from multicast
stream asi_stream {
 input mpts-udp://224.1.1.1:1000?programs=1070;
}

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

Check multicast flow
tcpdump -i any -n host 224.1.1.1

Test multicast connection
nc -u 224.1.1.1 1000

Check Dektec device status
dtinfocl --list-devices

•

•

•

•

•

•

•

•

3.3.7 Troubleshooting

- 22/105 - © Flussonic 2025

Network Requirements

Multicast: Enabled in network infrastructure

IGMP: Support for multicast management

Ports: Availability of specified ports

3.3.9 Conclusion

ASI Reader provides a reliable solution for receiving ASI signals in the mcaster system. The module provides flexible configuration, integration with

various capture cards, and efficient flow transmission through multicast for further processing. Using multicast architecture allows scaling the

system and ensuring fault tolerance.

•

•

•

3.3.9 Conclusion

- 23/105 - © Flussonic 2025

3.4 SDI Coder

3.4.1 Overview

SDI Coder is a module within mcaster designed for capturing video and audio through SDI cards. The module provides high-quality reception of

professional video signals and is one of the main stream input options in the mcaster system.

3.4.2 Supported Capture Cards

Dektec

Full support for all Dektec models

Automatic signal parameter detection

Support for all SDI standards

Blackmagic Design

Compatibility with Blackmagic cards

Support for DeckLink series

Integration with Blackmagic SDK

V4L Compatible Cards

Streamlabs — streaming cards

Softlab — professional capture cards

Magewell — USB and PCI capture cards

Any other cards with V4L2 support

•

•

•

•

•

•

•

•

•

•

3.4 SDI Coder

- 24/105 - © Flussonic 2025

3.4.3 Supported Formats

SDI-SD (Standard Definition)

Resolution: 480i, 576i

Frame rates: 25, 29.97, 30 fps

Features: Analog teletext support (zvbi)

Application: Archive materials, SD broadcasting

SDI-HD (High Definition)

Resolutions: 720p, 1080i, 1080p

Frame rates: 23.976, 24, 25, 29.97, 30, 50, 59.94, 60 fps

Standards: HD-SDI, 3G-SDI

SDI-UHD (Ultra High Definition)

Resolutions: 4K (2160p), 8K

Standards: 6G-SDI, 12G-SDI

Application: Modern UHD broadcasting

3.4.4 Input Signals

Video

Main SDI video signal

Automatic parameter detection

Support for various color spaces

Multichannel Audio

Channels: up to 16 audio channels

Formats: PCM, AES/EBU

Sample rate: 48 kHz (standard), 96 kHz (optional)

Bit depth: 16, 20, 24 bit

Teletext and Subtitles

SDI-SD: Analog teletext (zvbi)

SDI-HD: Digital subtitles

Formats: DVB, CEA-608, CEA-708

Encodings: UTF-8, Latin-1

CEA-608/708 CLOSED CAPTIONS

Closed captions (CC) are text representation of the audio part of a TV program, movie, etc. It is a transcription or translation of the dialogue, sound

effects, some relevant musical cues, and other relevant audio information in case when sound is unavailable or not clearly audible. Initially, closed

captions were designed for deaf and hard of hearing people.

Mcaster is able to detect CEA-608/708 closed captions in SDI source streams and to read them. It is done automatically, so there's no need to

configure it explicitly. The module reads the CEA-608/708 captions from an SDI stream, performs repackaging and then carries them within the

MPEG-TS stream as an H.264 SEI NALU.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.4.3 Supported Formats

- 25/105 - © Flussonic 2025

H.264 file consists of a number of NAL Units, i.e., Network Abstraction Layer Units, SEI* refers to Supplemental Enhancement Information.

CEA-608 is a streaming, character-based format that allows for the transmission of up to 4 simultaneous channels of data. Mcaster adds 4 text

tracks to those 4 channels (one for every channel). As a result, we have 4 text tracks and one video track carrying CEA-608/708 closed captions. You

can later play those text tracks via WebVTT or TTML together with HLS, DASH, etc. video streams.

VBI TELETEXT (IMPORTANT FOR LEGACY BROADCASTING SYSTEMS)

VBI teletext is a critically important feature for legacy broadcasting systems that still transmit teletext and SD quality. VBI (Vertical Blanking Interval)

is a gap in the sequence of lines which is used in analog television. During VBI no picture information is transmitted, but this area may contain such

information as teletext or closed captions.

Mcaster allows reading EBU Teletext and subtitles (EBU Teletext subtitle data) from VBI in source streams received from an SDI card. Mcaster then

retransmits them to MPTS or SPTS output.

When receiving video from an SDI card, Mcaster:

Decodes the received data

Reads the information about teletext from VBI

Compresses the data to be further transmitted over the Internet

Packages the stream with the teletext data into an MPEG-TS stream

VBI Teletext Configuration

To enable teletext reading, use the ttxt_descriptors parameter:

For Decklink cards:

For Decklink cards with NVENC transcoding:

Teletext Parameters

The ttxt_descriptors require the following parameters:

page — page number according to the format 0x[teletext_magazine_number][teletext_page_number]

lang — the language of teletext according to the ISO 639-2 standard

type — teletext page type:

initial — initial teletext page

subtitle — page with subtitles

impaired — teletext subtitle page for hearing impaired people

Example: ttxt_descriptors=0x100:rus:initial,0x888:rus:subtitle

Note

1.

2.

3.

4.

stream example_stream {
 input v4l2:// audio_device=plughw:1,0 ttxt_descriptors=0x100:rus:initial,0x888:rus:subtitle vbi_debug=true vbi_device=/dev/vbi0 video_device=/dev/video0;
}

stream example_stream {
 input decklink://0 pixel=10 ttxt_descriptors=0x100:rus:initial,0x888:rus:subtitle;
}

stream example-stream {
 input decklink://2 pixel=10 ttxt_descriptors=0x100:rus:initial,0x888:rus:subtitle;
 transcoder deviceid=0 external=false hw=nvenc vb=5000k vcodec=h264 open_gop=false preset=veryfast size=3840x2160:fit:#000000 ab=128k split_channels=false;
}

•

•

•

•

•

•

3.4.4 Input Signals

- 26/105 - © Flussonic 2025

This feature is especially important for integration with legacy broadcasting systems that continue to use analog teletext in SD quality.

3.4.5 Timestamp Correction Subsystem

Automatic Alignment

Timestamp jitter: Automatic stabilization

Algorithms: Adaptive filtering, median filtering

Accuracy: ±1 μs

Lost Frame Correction

Detection: Automatic identification of missing frames

Recovery: Duplication of previous frame or interpolation

Logging: Recording all corrections in log

Correction Settings

3.4.6 Module Configuration

Basic Settings

Capture Parameters

Output Settings

3.4.7 Integration with mcaster

As Stream Source

SDI Coder can be configured as a source for: - Live streaming - DVR recording - Transcoding - Network distribution

Note

•

•

•

•

•

•

timestamp_correction:
 enabled: true
 jitter_threshold: 1000 # microseconds
 frame_drop_detection: true
 interpolation_method: "duplicate" # duplicate, interpolate
 log_corrections: true

sdi_coder:
 device: "/dev/video0"
 input_format: "auto" # auto, 1080i50, 720p60, etc.
 audio_channels: 8
 enable_teletext: true
 timestamp_correction: true

capture_settings:
 video_buffer_size: 10 # seconds
 audio_buffer_size: 5 # seconds
 drop_frames_on_overflow: true
 sync_mode: "hardware" # hardware, software

output_settings:
 format: "mpegts"
 bitrate: "auto" # auto or specific value
 gop_size: 30
 audio_codec: "aac"
 video_codec: "h264"

3.4.5 Timestamp Correction Subsystem

- 27/105 - © Flussonic 2025

Stream Configuration Example

3.4.8 Monitoring and Diagnostics

Capture Statistics

Frame rate (current/average)

Video and audio bitrate

Number of timestamp corrections

Synchronization status

Logging

Prometheus Metrics

sdi_coder_fps — frame rate

sdi_coder_bitrate — bitrate

sdi_coder_timestamp_corrections — number of corrections

sdi_coder_frame_drops — dropped frames

3.4.9 Troubleshooting

Common Issues

NO SIGNAL

Check SDI cable connection

Ensure correct device selection

Check input signal format

SYNCHRONIZATION ISSUES

Enable timestamp correction

Check SDI signal quality

Configure buffering parameters

AUDIO ISSUES

Check audio channel settings

Ensure audio format support

Check audio/video synchronization

streams:
 sdi_main:
 source: "sdi_coder:///dev/video0"
 output: "rtmp://server/live/stream"
 transcoder:
 video:
 codec: "h264"
 bitrate: "5000k"
 resolution: "1920x1080"
 audio:
 codec: "aac"
 bitrate: "128k"
 channels: 2

•

•

•

•

logging:
 level: "info" # debug, info, warning, error
 log_timestamp_corrections: true
 log_frame_drops: true
 log_device_status: true

•

•

•

•

1.

2.

3.

1.

2.

3.

1.

2.

3.

3.4.8 Monitoring and Diagnostics

- 28/105 - © Flussonic 2025

Diagnostic Commands

3.4.10 System Requirements

Hardware Requirements

CPU: Minimum 4 cores for HD, 8 cores for UHD

RAM: 8 GB for HD, 16 GB for UHD

Network: Gigabit Ethernet

Storage: SSD for buffering

Software Requirements

Linux kernel 4.19+

V4L2 support

FFmpeg 4.0+

Appropriate drivers for SDI card

3.4.11 Conclusion

SDI Coder provides a professional solution for capturing SDI signals in the mcaster system. The module ensures high reliability, automatic timestamp

correction, and support for a wide range of equipment, making it an ideal choice for professional broadcasting.

Check available devices
v4l2-ctl --list-devices

Information about current signal
v4l2-ctl --device=/dev/video0 --all

Capture test
ffmpeg -f v4l2 -i /dev/video0 -t 10 test.mp4

•

•

•

•

•

•

•

•

3.4.10 System Requirements

- 29/105 - © Flussonic 2025

3.5 HDMI Encoder

The HDMI encoder as part of Mcaster is designed to receive video signals from medium and entry-level consoles and prepare content for further

transmission via various interfaces: SDI, NDI, ST2110 or already in compressed form.

3.5.1 Recommended Hardware

For HDMI capture, entry-level Blackmagic Decklink cards are recommended. They have the following characteristics:

Affordable cost

Sufficient reliability for short-term capture

Ease of setup and use

For 24/7 operation, Blackmagic Decklink cards are not recommended due to possible issues with timecodes and stability during long-term use.

3.5.2 Drivers

All necessary drivers for working with the HDMI encoder are already included in the InfraMedia distribution and do not require additional installation.

3.5.3 HDMI Capture Setup

To check available capture devices, run the command:

If successful, you will see a list of available capture devices.

Basic Stream Configuration

Configure the stream for HDMI capture as follows:

Mcaster will connect to the specified first device (0) and launch autoconfiguration to search for active resolution.

Manual Mode Configuration

Some Decklink models do not support automatic search for active resolution. For them, it is necessary to specify the mode manually using the mode

and vinput options.

For example, for Intensity Pro with a connected HDMI source of 720p and 50 fps:

•

•

•

Warning

BlackmagicFirmwareUpdater status

stream sdi {
 input decklink://0;
}

stream sdi {
 input decklink://0 mode=hp50 vinput=hdmi;
}

3.5 HDMI Encoder

- 30/105 - © Flussonic 2025

Web Interface Configuration

You can configure HDMI capture parameters through the Mcaster UI:

Go to the Streams tab on the Media page in the side menu

Open the settings of a stream configured for HDMI capture (with source decklink://0)

Go to the Input tab and click Options

Set the necessary parameter values in the Decklink section

3.5.4 HDMI Stream Transcoding

To transcode the captured HDMI stream, add the transcoder directive to the stream settings:

The transcoding parameter external=false is used by default for HDMI and other "raw" video streams, preventing excessive server load.

Benefits of the New Approach

Improved video quality by avoiding double transcoding

Server resource savings

"Seamless" switching between HDMI and other stream sources

Ease of configuration through the web interface

If you do not specify transcoding settings in transcoder , the stream will not work.

3.5.5 Deinterlacing

To improve video quality, Mcaster can eliminate interlacing in progressive streams using the CUDA yadif deinterlacing method:

3.5.6 SD Video Capture

Mcaster supports video with non-square pixels (anamorphic video) when capturing from HDMI cards. This is especially important for SD (standard

definition) quality.

To preserve proportions in the output video without image distortion, specify the sar of the input stream:

Mcaster calculates the output video resolution based on sar . For example, with sar=16:11 , incoming anamorphic video 720x576 will pass through

Mcaster with 1048x576 resolution.

1.

2.

3.

4.

stream sdi {
 input decklink://0;
 transcoder vb=3096k ab=64k;
}

Note

•

•

•

•

Warning

stream test {
 input decklink://1 vinput=sdi;
 transcoder vb=4000k hw=nvenc preset=slow fps=50 deinterlace=yadif ab=128k;
}

stream test {
 input decklink://1 vinput=hdmi sar=16:11;
}

3.5.4 HDMI Stream Transcoding

- 31/105 - © Flussonic 2025

3.5.7 Duplex Mode Operation

Mcaster allows setting duplex mode for Decklink HDMI cards. In this mode, ports can be used individually for input or output, or as a combination of

input and output.

For more information on setting up duplex mode, see Duplex Mode Operation.

3.5.8 Limitations and Recommendations

Time Limitations

Blackmagic Decklink cards have limitations during long-term use:

High probability of timecode shifts

Incorrect timecode transmission

Instability during 24/7 operation

Recommendations for Critical Systems

For use in mission-critical systems where reliability and stability are important, it is recommended to use Dektec cards instead of Blackmagic

Decklink.

Testing New Cards

If you want to test other capture cards for addition to the recommended list - contact us for testing.

•

•

•

3.5.7 Duplex Mode Operation

- 32/105 - © Flussonic 2025

3.6 SRT Reader

3.6.1 Overview

SRT Reader is a module within Mcaster that receives publications via the SRT (Secure Reliable Transport) protocol or captures streams from other

servers via SRT. The module provides reliable video stream transmission with minimal latency and automatic recovery of lost packets.

3.6.2 Operating Principles

Receiving Publications

The module can receive SRT streams from external sources:

Publication — receiving streams from encoders or other servers

Capture — connecting to remote SRT servers

SPTS Support — working with Single Program Transport Stream

SRT Protocol

Reliability — automatic recovery of lost packets

Security — built-in encryption using passphrase

Low latency — optimized for live video

Adaptability — automatic adjustment to network quality

3.6.3 Configuration

Basic Setup for Receiving Publications

Configuration Parameters

Advanced Configuration

•

•

•

•

•

•

•

stream input-srt {
 input publish://;
 srt_publish {
 port 5912;
 latency 40;
 }
}

Parameter Description Required Example

input publish:// Allows publication to stream Yes publish://

port Port for receiving SRT publication Yes 5912

latency Latency in milliseconds No 40

passphrase Encryption key No mysecretkey

stream secure-srt {
 input publish://;
 srt_publish {
 port 5913;
 latency 60;
 passphrase "mysecretkey123";
 }

 # Additional settings
 buffer_size 8192;
 timeout 5000;
}

3.6 SRT Reader

- 33/105 - © Flussonic 2025

Stream Capture Configuration

3.6.4 SRT Options

passphrase

Purpose: Encryption key for stream protection

Requirement: Must be identical on both ends of connection

Format: String of arbitrary length

Recommendation: Use complex keys for security

latency

Purpose: Buffer latency configuration

Behavior: Affects stability but not critical for operation

Values: Usually 20-200 milliseconds

Default: 40 milliseconds

3.6.5 Publication Testing

Sending Stream via FFmpeg

Sending Stream from Another Server

3.6.6 Monitoring

SRT-Specific Parameters

ROUND TRIP TIME (RTT)

stream capture-srt {
 input srt://remote-server:5912?passphrase=mysecretkey;
 output rtmp://server/live/captured;
}

•

•

•

•

•

•

•

•

Publishing local file
ffmpeg -re -i input.mp4 -c copy -f mpegts srt://localhost:5912

Publishing from camera
ffmpeg -f v4l2 -i /dev/video0 -c:v libx264 -preset ultrafast -tune zerolatency -f mpegts srt://localhost:5912

Publishing with passphrase
ffmpeg -re -i input.mp4 -c copy -f mpegts "srt://localhost:5912?passphrase=mysecretkey"

From another mcaster
ffmpeg -re -i input.mp4 -c copy -f mpegts srt://mcaster-server:5912

From OBS Studio
Configure SRT Output in OBS with address mcaster-server:5912

{
 "stats": {
 "input": {
 "srt": {
 "rtt": 25.5 // Round Trip Time in milliseconds
 }
 }

3.6.4 SRT Options

- 34/105 - © Flussonic 2025

Description: Total delay for feedback

Normal value: 10-50 ms

Problematic value: >100 ms

Action: Check network quality when RTT is high

REAL LATENCY

Description: Actual latency on receiving side

Variability: Changes due to packet losses

Normal value: 20-80 ms

Monitoring: Track value stability

RETRANSMITTED PACKETS

Description: Number of packets sent again

Normal value: 0-50 packets per minute

Problematic value: >100 packets per minute

Cause: Poor network quality

General MPEGTS Reader Metrics

3.6.7 Usage Examples

Simple Publication

 }
}

•

•

•

•

{
 "stats": {
 "input": {
 "srt": {
 "latency": 35.2 // Real latency in milliseconds
 }
 }
 }
}

•

•

•

•

{
 "stats": {
 "input": {
 "srt": {
 "retransmitted_packets": 15 // Number of retransmitted packets
 }
 }
 }
}

•

•

•

•

{
 "stats": {
 "input": {
 "packets_received": 125000,
 "packets_lost": 5,
 "bitrate": 5000000,
 "fps": 25.0
 }
 }
}

stream live_channel {
 input publish://;
 srt_publish {
 port 5912;
 latency 40;
 }
 output rtmp://server/live/stream;
}

3.6.7 Usage Examples

- 35/105 - © Flussonic 2025

Secure Publication

Multiple Streams

Transcoder Integration

3.6.8 Troubleshooting

Connection Issues

CANNOT CONNECT TO PORT

Check port availability — ensure port is not occupied

Check firewall — allow incoming connections

Check configuration — ensure settings are correct

Check module logs for errors

HIGH RTT

Check network quality between client and server

Increase latency for stabilization

Check server load

Consider using CDN

stream secure_channel {
 input publish://;
 srt_publish {
 port 5913;
 latency 60;
 passphrase "complex_secret_key_2024";
 }
 output rtmp://server/live/secure;
}

Stream 1
stream channel_1 {
 input publish://;
 srt_publish {
 port 5912;
 latency 40;
 }
 output rtmp://server/live/ch1;
}

Stream 2
stream channel_2 {
 input publish://;
 srt_publish {
 port 5913;
 latency 40;
 }
 output rtmp://server/live/ch2;
}

stream transcoded_srt {
 input publish://;
 srt_publish {
 port 5914;
 latency 50;
 }

 transcoder {
 video {
 codec h264;
 bitrate 5000k;
 }
 audio {
 codec aac;
 bitrate 128k;
 }
 }

 output rtmp://server/live/transcoded;
}

1.

2.

3.

4.

1.

2.

3.

4.

3.6.8 Troubleshooting

- 36/105 - © Flussonic 2025

FREQUENT PACKET RETRANSMISSIONS

Check network stability

Reduce stream bitrate

Check encoder settings

Monitor internet connection quality

Diagnostic Commands

3.6.9 Configuration Recommendations

Optimal Latency Values

Stable network: 20-40 ms

Unstable network: 60-120 ms

Satellite connection: 200-500 ms

Mobile network: 100-200 ms

Security

Use complex passphrases — minimum 16 characters

Regularly change keys — every 30-90 days

Restrict port access — use firewall

Monitor connections — track suspicious activity

Performance

Sufficient bandwidth — minimum 2x stream bitrate

Stable internet connection — to minimize losses

Encoder optimization — configure for SRT

Resource monitoring — CPU, memory, network

Critical Parameter Monitoring

stats.input.srt.rtt — network quality

stats.input.srt.retransmitted_packets — connection stability

stats.input.srt.latency — real latency

3.6.10 Conclusion

SRT Reader provides reliable and secure video stream transmission with minimal latency. The module supports both receiving publications and

capturing streams, making it a universal solution for various broadcasting scenarios. Built-in monitoring and diagnostics allow efficient management

of transmission quality and quick resolution of emerging issues.

1.

2.

3.

4.

Check port availability
netstat -tuln | grep 5912

Connection test
telnet localhost 5912

Network traffic monitoring
tcpdump -i any -n port 5912

Check SRT metrics
curl -X GET "http://localhost:8080/api/stream_get?name=input-srt"

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.6.9 Configuration Recommendations

- 37/105 - © Flussonic 2025

3.7 DVB Reader

3.7.1 Overview

DVB Reader is a module within mcaster that allows receiving video directly from DVB capture cards. The module supports various DVB standards

(DVB-S/S2, DVB-T/T2, DVB-C) and provides reliable reception of FTA (Free-to-Air) channels or descrambled content.

3.7.2 Supported Standards

DVB-S/S2 (Satellite Broadcasting)

Frequency range: 950-2150 MHz

Modulations: QPSK, 8PSK, 16APSK, 32APSK

Polarization: Horizontal (H) and Vertical (V)

Symbol rates: 1000-45000 KS/s

DVB-T/T2 (Terrestrial Broadcasting)

Frequency range: 174-862 MHz

Modulations: QPSK, 16QAM, 64QAM, 256QAM

Bandwidths: 6, 7, 8 MHz

Modes: 2K, 4K, 8K

DVB-C (Cable Broadcasting)

Frequency range: 47-862 MHz

Modulations: 16QAM, 32QAM, 64QAM, 128QAM, 256QAM

Symbol rates: 1000-7000 KS/s

3.7.3 DVB Card Configuration

Basic Configuration Structure

•

•

•

•

•

•

•

•

•

•

•

dvb_card card_name {
 system standard;
 adapter adapter_number;
 frontend frontend_number;
 frequency frequency;
 symbol_rate symbol_rate;
 polarization polarization;
 modulation modulation;
 bandwidth bandwidth;
 plp_stream_id stream_id;
 disabled;
 comment "description";
}

3.7 DVB Reader

- 38/105 - © Flussonic 2025

Configuration Parameters

DVB-S2 Configuration Example

DVB-T2 Configuration Example

DVB-C Configuration Example

3.7.4 Stream Configuration

Basic Stream

Parameter Description Required Example

system DVB standard Yes dvbs2 , dvbt , dvbc

adapter Adapter number Yes 0 , 1 , 2

frontend Frontend number Yes 0 , 1 , 2 , 3

frequency Frequency in Hz Yes 195028615

symbol_rate Symbol rate Yes 29500

polarization Polarization (for DVB-S) No h , v

modulation Modulation type No qam256 , qpsk

bandwidth Bandwidth No 5000000

plp_stream_id PLP stream ID No 4

disabled Disable card No -

comment Comment No "13E high vertical"

dvb_card a0 {
 system dvbs2;
 adapter 1;
 frontend 3;
 frequency 195028615;
 symbol_rate 29500;
 polarization v;
 modulation qam256;
 bandwidth 5000000;
 plp_stream_id 4;
 comment "13E high vertical";
}

dvb_card terrestrial {
 system dvbt2;
 adapter 0;
 frontend 0;
 frequency 474000000;
 bandwidth 8000000;
 modulation qam256;
 comment "DVB-T2 multiplex";
}

dvb_card cable {
 system dvbc;
 adapter 0;
 frontend 0;
 frequency 474000000;
 symbol_rate 6875;
 modulation qam256;
 comment "Cable network";
}

stream ort {
 input mpts-dvb://a0?program=15;
}

3.7.4 Stream Configuration

- 39/105 - © Flussonic 2025

Stream Parameters

Advanced Stream Configuration

Multiple Streams

3.7.5 Supported Capture Cards

DVB-S/S2 Cards

TBS — satellite reception card series

DekTec — professional capture cards

Hauppauge — home use cards

TechnoTrend — budget solutions

DVB-T/T2 Cards

Hauppauge — terrestrial reception cards

PCTV — USB tuners

AverMedia — digital TV cards

DVB-C Cards

Hauppauge — cable TV cards

PCTV — cable USB tuners

TechnoTrend — cable network cards

Parameter Description Required Example

mpts-dvb:// DVB protocol Yes mpts-dvb://

card_name Configured card name Yes a0 , terrestrial

program Program number Yes 15 , 1 , 2

stream hd_channel {
 input mpts-dvb://a0?program=15;

 transcoder {
 video {
 codec h264;
 bitrate 5000k;
 }
 audio {
 codec aac;
 bitrate 128k;
 }
 }
}

Main channel
stream main_channel {
 input mpts-dvb://a0?program=15;
}

Secondary channel
stream secondary_channel {
 input mpts-dvb://a0?program=16;
}

•

•

•

•

•

•

•

•

•

•

3.7.5 Supported Capture Cards

- 40/105 - © Flussonic 2025

3.7.6 Troubleshooting

Signal Issues

NO SIGNAL

Check connection of antenna/cable

Ensure correctness of frequency and parameters

Check polarization (for DVB-S)

Check capture card drivers

WEAK SIGNAL

Check quality of antenna and cables

Ensure correctness of antenna direction

Check interference from other devices

Consider signal amplifier

POOR QUALITY

Check modulation settings

Ensure correctness of symbol rate

Check interference and reflections

Optimize antenna placement

Capture Card Issues

CARD NOT DETECTED

Check card connection

Ensure compatibility with system

Check drivers and firmware

Check device access permissions

DRIVER ERRORS

Update card drivers

Check compatibility with Linux kernel

Reboot system

Check conflicts with other devices

Diagnostic Commands

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

Check available DVB devices
ls /dev/dvb/

Card information
dvbv5-scan -a 0 -f 195028615 -s 29500 -p v -m qam256

Signal check
dvbv5-zap -a 0 -f 195028615 -s 29500 -p v -m qam256

Statistics monitoring
cat /proc/dvb/adapter0/frontend0/statistics

3.7.6 Troubleshooting

- 41/105 - © Flussonic 2025

3.7.7 Configuration Recommendations

Reception Optimization

DVB-S/S2

Use quality antenna of appropriate size

Properly configure polarization and frequency

Check symbol rate of transponder

Use quality cables with minimal losses

DVB-T/T2

Check coverage in your region

Use directional antenna for better reception

Properly configure bandwidth

Check multiplex modulation

DVB-C

Ensure compatibility with cable network

Check symbol rate of provider

Configure correct modulation

Check quality of cable connection

Security and Stability

Regularly update drivers of capture cards

Monitor signal quality in real-time

Use backup cards for critical channels

Maintain logs for problem diagnosis

Performance

Optimize settings for specific content

Use hardware acceleration when possible

Monitor system load with multiple streams

Plan redundancy for important channels

3.7.8 Conclusion

DVB Reader provides reliable and efficient video reception from DVB capture cards. Support for various DVB standards, flexible configuration, and

built-in monitoring make the module an ideal solution for professional broadcasting. Proper parameter configuration and regular signal quality

monitoring ensure stable operation in complex reception conditions.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.7.7 Configuration Recommendations

- 42/105 - © Flussonic 2025

3.8 DVB-WebVTT

3.8.1 Overview

DVB-WebVTT is a module in mcaster that receives subtitles from DVB in graphical format, recognizes them using OCR (Optical Character

Recognition), and converts them to textual WebVTT subtitles. The resulting subtitles are suitable for playback on modern devices, including phones

and televisions.

3.8.2 Operating Principles

DVB Subtitle Processing

DVB subtitle reception — the module receives subtitles in graphical format from MPEG-TS flow

OCR recognition — automatic text recognition from subtitle images

WebVTT conversion — transformation into textual WebVTT format

Language separation — automatic separation of subtitles by languages

Manifest insertion — adding subtitles to HLS and DASH manifests

Supported Formats

Input: DVB subtitles in graphical format

Output: WebVTT textual subtitles

Containers: HLS, DASH

Languages: Automatic detection and separation by languages

3.8.3 Configuration

Basic Setup

Configuration Parameters

Dvbocr Operation Modes

replace

Action: Replaces graphical DVB subtitles with textual WebVTT

Result: Output flow contains only textual subtitles

Application: Standard mode for most cases

add

Action: Adds textual subtitles to existing graphical ones

Result: Output flow contains both types of subtitles

Application: For compatibility with old devices

1.

2.

3.

4.

5.

•

•

•

•

stream vtt1 {
 input udp://239.0.0.1:1234;
 dvbocr replace;
}

Parameter Description Required Example

input Input flow with DVB subtitles Yes udp://239.0.0.1:1234

dvbocr Subtitle processing mode Yes replace

•

•

•

•

•

•

3.8 DVB-WebVTT

- 43/105 - © Flussonic 2025

Extended Configuration

3.8.4 OCR Technology

Recognition Algorithms

Neural networks — modern machine learning algorithms

Adaptive processing — adjustment to image quality

Multilingual recognition — support for various languages

Context analysis — improving recognition accuracy

Quality Optimization

Image preprocessing — improving contrast and clarity

Noise filtering — removing compression artifacts

Result validation — checking recognized text correctness

Error correction — fixing typical OCR errors

3.8.5 Output Formats

WebVTT Subtitles

HLS Manifest

DASH Manifest

stream vtt1 {
 input udp://239.0.0.1:1234;
 dvbocr replace;

 # Additional parameters
 subtitle_languages auto; # Automatic language detection
 ocr_confidence 0.8; # Minimum recognition confidence
 subtitle_delay 0; # Subtitle delay in seconds
}

•

•

•

•

•

•

•

•

WEBVTT

00:00:01.000 --> 00:00:04.000
This is an example of textual subtitles

00:00:05.000 --> 00:00:08.000
Recognized from DVB flow

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-TARGETDURATION:10
#EXTINF:10.0,
segment_001.ts
#EXTINF:10.0,
segment_002.ts

Subtitles for different languages
#EXT-X-MEDIA:TYPE=SUBTITLES,GROUP-ID="subs",LANGUAGE="ru",NAME="Russian",DEFAULT=YES,URI="subtitles_ru.vtt"
#EXT-X-MEDIA:TYPE=SUBTITLES,GROUP-ID="subs",LANGUAGE="en",NAME="English",DEFAULT=NO,URI="subtitles_en.vtt"

<AdaptationSet mimeType="text/vtt" lang="ru">
 <SegmentTemplate media="subtitles_ru_$Number$.vtt" initialization="subtitles_ru_init.vtt"/>
</AdaptationSet>
<AdaptationSet mimeType="text/vtt" lang="en">
 <SegmentTemplate media="subtitles_en_$Number$.vtt" initialization="subtitles_en_init.vtt"/>
</AdaptationSet>

3.8.4 OCR Technology

- 44/105 - © Flussonic 2025

3.8.6 Automatic Language Separation

Language Detection

The module automatically determines subtitle language based on language codes in DVB flow

3.8.7 Troubleshooting

Recognition Problems

LOW RECOGNITION QUALITY

Check quality of incoming DVB signal

Check language support by support, possibly it is not supported

NO SUBTITLES IN OUTPUT

Check presence of DVB subtitles in input flow

Ensure correctness of dvbocr configuration

Check module logs for errors

Performance

Sufficient CPU resources — for real-time OCR processing

Memory optimization — for subtitle frame buffering

Efficient disk system — for output file writing

3.8.8 Device Compatibility

Supported Devices

Modern televisions — with HLS/DASH support

Smartphones and tablets — iOS, Android

Web browsers — Chrome, Firefox, Safari, Edge

Streaming devices — Apple TV, Chromecast, Fire TV

Subtitle Formats

WebVTT — standard for HTML5 video

HLS subtitles — embedded in m3u8 manifests

DASH subtitles — separate adaptation sets

3.8.9 Conclusion

DVB-WebVTT module provides a modern solution for converting graphical DVB subtitles to textual WebVTT subtitles. Automatic recognition,

multilingual support, and integration with HLS/DASH make it an indispensable tool for ensuring content accessibility on modern devices.

1.

2.

1.

2.

3.

•

•

•

•

•

•

•

•

•

•

3.8.6 Automatic Language Separation

- 45/105 - © Flussonic 2025

3.9 DVR

Mcaster DVR module writes video archives to disk and enables playback of recorded content. This functionality allows users to pause live

broadcasts, rewind to earlier parts of programs, and access archived content from previous days.

3.9.1 Overview

The DVR module provides comprehensive video recording and archive management capabilities. It supports various playback scenarios including:

Pausing live broadcasts to take breaks

Watching current programs from the beginning

Accessing yesterday's programs

Bookmarking favorite programs for later viewing

Key Features

Continuous Recording: Automatic archive creation with configurable retention periods

Multiple Playback Methods: Support for different timeshift approaches

Middleware Integration: Seamless integration with IPTV middleware systems

Flexible Storage: Configurable storage locations and retention policies

Timeshift Support: Both relative and absolute timeshift capabilities

3.9.2 Basic Configuration

Simple DVR Setup

Where: * /storage - path to storage directory (stream name will be automatically added) * 7d - retention period (7 days)

Advanced DVR Configuration

3.9.3 Playback Methods

EPG-Based Archive Playback

For middleware systems with precise EPG schedules, use EPG-based archive URLs:

Where: * START_TIME - program start time in UTC (Epoch time) * DURATION - program duration in seconds

Example:

•

•

•

•

•

•

•

•

•

stream example_channel {
 input udp://239.0.0.1:1234;
 dvr /storage 7d;
}

stream premium_channel {
 input udp://239.0.0.1:1234;
 dvr /storage 30d;
}

http://MCASTER-IP/STREAM_NAME/archive-START_TIME-DURATION.m3u8?event=true

http://192.168.1.100/news_channel/archive-1717677139-2116.m3u8?event=true

3.9 DVR

- 46/105 - © Flussonic 2025

This method allows:

Seeking within the program

Pausing and resuming

Fast forward playback

Event Playlists for Live Content

For current broadcasts, use event playlists that automatically switch from EVENT to VOD mode:

Important Notes:

Event playlists don't support rewinding in native Safari

Requires custom JavaScript timeline implementation for TV applications

Automatic switching between EVENT and VOD modes

3.9.4 Timeshift Capabilities

Relative Timeshift

Create delayed streams with fixed time offsets:

This creates a stream with 1-hour delay (3600 seconds).

Absolute Timeshift

For personalized timeshift access, use absolute timeshift URLs:

HLS Playback:

HTTP MPEG-TS Playback:

Where TIMESTAMP is the absolute time in UTC (Epoch time).

Handling Archive Gaps

When archive contains gaps (e.g., source downtime), use the ignore_gaps=true parameter:

This allows playback to continue by skipping gaps in the archive.

3.9.5 Middleware Integration

EPG-VOD Method

For playing archived content, use EPG-based URLs:

•

•

•

http://MCASTER-IP/STREAM_NAME/archive-START_TIME-DURATION.m3u8?event=true

•

•

•

stream delayed_channel {
 input timeshift://original_channel/3600;
}

http://MCASTER-IP/STREAM_NAME/timeshift_abs-TIMESTAMP.m3u8

http://MCASTER-IP/STREAM_NAME/timeshift_abs-TIMESTAMP.ts

http://MCASTER-IP/STREAM_NAME/timeshift_abs-123123123.m3u8?ignore_gaps=true

http://MCASTER-IP/STREAM_NAME/archive-START_TIME-DURATION.m3u8?event=true

3.9.4 Timeshift Capabilities

- 47/105 - © Flussonic 2025

Implementation Requirements:

Precise EPG schedule maintenance

UTC time handling (avoid local time)

Viewing time storage in middleware database

Automatic program switching at playback end

Event Playlist Method

For current broadcasts, use event playlists with automatic mode switching:

Key Features:

Automatic EVENT to VOD switching

Pause and resume functionality

Custom "live" button implementation required

EPG-based program continuation

3.9.6 Scalability Considerations

Timeshift_abs Limitations

The timeshift_abs method has significant scalability limitations:

Session Management: Flussonic uses probabilistic session joining based on client IP, channel name, protocol, and token

Consecutive Requests: Multiple timeshift_abs requests may be treated as the same session

Viewing Distortion: Can cause playback issues with multiple simultaneous users

Token Requirements: New tokens should be passed for each timeshift_abs request

Scaling Solutions

For high-user scenarios, consider these approaches:

Proportional DVR Servers:

Deploy DVR servers proportionally to the number of viewers

Each server handles a subset of users

Reduces session conflicts

Alternative Methods:

Use relative timeshift for popular content

Implement middleware-based timeshift management

Consider CDN integration for archive distribution

3.9.7 Storage Management

Retention Policies

Configure retention periods based on content type and storage capacity:

•

•

•

•

http://MCASTER-IP/STREAM_NAME/archive-START_TIME-DURATION.m3u8?event=true

•

•

•

•

•

•

•

•

•

•

•

•

•

•

stream news_channel {
 input udp://239.0.0.1:1234;
 dvr /storage 7d; # 7 days retention
}

3.9.6 Scalability Considerations

- 48/105 - © Flussonic 2025

Storage Optimization

Segment Duration: Balance between seek granularity and storage efficiency

Compression: Use appropriate video compression for archive storage

Cleanup: Implement automatic cleanup of expired archives

Monitoring: Track storage usage and archive health

3.9.8 Performance Monitoring

Key Metrics

Recording Performance: Monitor archive creation speed and reliability

Playback Performance: Track timeshift request success rates

Storage Utilization: Monitor disk usage and cleanup efficiency

Session Management: Track timeshift_abs session conflicts

Health Checks

Archive Integrity: Verify recorded content quality

Storage Availability: Monitor disk space and I/O performance

Network Performance: Track archive delivery metrics

Error Rates: Monitor recording and playback failures

3.9.9 Troubleshooting

Common Issues

Archive Gaps: Use ignore_gaps=true parameter or investigate source issues

Session Conflicts: Implement proper token management for timeshift_abs

Storage Full: Monitor retention policies and cleanup processes

Playback Errors: Check archive integrity and network connectivity

Debug Tools

Archive Inspection: Verify recorded content and timestamps

Session Logs: Monitor timeshift session management

Storage Analysis: Check disk usage and I/O patterns

Network Diagnostics: Verify archive delivery performance

stream movies_channel {
 input udp://239.0.0.1:1234;
 dvr /storage 30d; # 30 days retention
}

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.9.8 Performance Monitoring

- 49/105 - © Flussonic 2025

3.10 RTMP Reader

This module allows receiving video via RTMP protocol from broadcast software such as OBS or vMix.

3.10.1 Global Port Setup

To configure it, you need to enable the global rtmp port:

Don't forget to unblock it on the firewall.

3.10.2 Stream Configuration

Then allow publishing in the stream:

3.10.3 Access Control

To restrict publishing capability, you need to specify a password:

In this case, publishing should go to a stream with the name:

3.10.4 RTMP Server

The RTMP server name will be:

3.10.5 Supported Broadcast Software

The module works with the following broadcast software:

OBS Studio

vMix

Wirecast

XSplit Broadcaster

Other RTMP-compatible applications

rtmp 1935;

stream s {
 input publish://;
}

stream s {
 input publish;
 password secretkey;
}

s?password=secretkey

rtmp://server-hostname/static

•

•

•

•

•

3.10 RTMP Reader

- 50/105 - © Flussonic 2025

3.10.6 Security

For security, it is recommended to:

Use passwords for all publications

Configure firewall to restrict access to RTMP port

Regularly change passwords

Monitor active connections

3.10.7 Monitoring

This module does not have separate telemetry, but you can track:

Number of active RTMP connections

Publication status

Connection errors

Server resource usage

•

•

•

•

•

•

•

•

3.10.6 Security

- 51/105 - © Flussonic 2025

3.11 LiveStreamInput (LSI)

3.11.1 Overview

LiveStreamInput (LSI) is a module within mcaster that implements signal source management and automatic switching between primary and backup

sources. The module ensures high broadcasting reliability through automatic switching when problems occur with the primary source.

3.11.2 Operating Principles

Automatic Switching

LSI automatically switches between sources under the following conditions: - Missing frames on the primary source - Signal quality issues -

Technical equipment failures

Backup Source Verification

During primary source operation, LSI regularly performs test connections to secondary sources to ensure backup readiness.

Source Compatibility

LSI checks compatibility between primary and backup sources by: - Codecs - Audio tracks - Stream parameters - Other characteristics for seamless

switching

3.11.3 Configuration

Basic Setup

Configuration Parameters

Advanced Configuration

3.11.4 Monitoring via HTTP API

Main API Methods

streams_list — list of all streams

stream_get — detailed stream information

stream Reg_1010_01_Kanal_ENC {
 input copy://Reg_1010_01_Kanal_sdi1;
 input copy://Reg_1010_01_Kanal_sdi2;
 title "01 FIRST CHANNEL";
 source_timeout 1;
}

Parameter Description Required Example

input Video signal source Yes copy://Reg_1010_01_Kanal_sdi1

title Stream name No "01 FIRST CHANNEL"

source_timeout Switch timeout (seconds) No 1

stream Main_Channel {
 input copy://primary_source source_timeout=10;
 input copy://backup_source_1;
 input copy://backup_source_2;
 title "Main Channel";
 source_timeout 2;
}

•

•

3.11 LiveStreamInput (LSI)

- 52/105 - © Flussonic 2025

Key Stats Parameters

RECONNECTIONS AND SWITCHES

BACKUP SOURCE STATUS

3.11.5 Monitoring Parameters Interpretation

Reconnections (stats.input.retries)

Normal value: 0-5 reconnections per day

Problematic value: >10 reconnections per day

Action: When there are many reconnections, check source stability

Switches (stats.input.input_switches)

Normal value: 0-2 switches per day

Problematic value: >5 switches per day

Action: Frequent switches indicate problems with the primary source

Time Working on Sources

Comparing num_sec_on_primary_input and num_sec_on_secondary_input shows: - Backup efficiency — how much time the system worked on

backup - Primary source quality — frequency of backup usage - Potential downtime without automatic switching

Backup Source Status

WORKING BACKUPS (stats.input.valid_secondary_inputs)

Normal value: >0 (working backup available)

Critical value: 0 (no working backups)

Action: When value is 0, immediate repair of backup sources is required

FAILED BACKUPS (stats.input.invalid_secondary_inputs)

Normal value: 0-1

Problematic value: >2

Action: Consider removing or reducing payment for unstable sources

INCOMPATIBLE SOURCES (stats.input.divergent_inputs)

Normal value: 0

Problematic value: >0

{
 "stats": {
 "input": {
 "retries": 15, // Number of reconnections
 "input_switches": 3, // Number of switches between sources
 "num_sec_on_primary_input": 86400, // Time working on primary source
 "num_sec_on_secondary_input": 3600 // Time working on backup source
 }
 }
}

{
 "stats": {
 "input": {
 "valid_secondary_inputs": 2, // Number of working backup sources
 "invalid_secondary_inputs": 1, // Number of failed backup sources
 "divergent_inputs": 0 // Number of incompatible sources
 }
 }
}

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.11.5 Monitoring Parameters Interpretation

- 53/105 - © Flussonic 2025

Risk: During failure, playback issues up to TV freezing are possible

Action: Bring sources to unified format

3.11.6 Monitoring Examples

Checking Stream Status

Monitoring Script

3.11.7 Troubleshooting

Frequent Reconnections

Check stability of primary source

Increase source_timeout to reduce sensitivity

Check network settings between mcaster and source

Monitor logs of LSI module

Missing Backup Sources

Check availability of backup sources

Ensure correctness of configuration

Check network connectivity

Restore backup sources

Source Incompatibility

Bring sources to unified format

Check codecs and parameters

Ensure matching audio tracks

Configure unified stream parameters

3.11.8 Configuration Recommendations

Optimal source_timeout Values

Stable sources: 1-2 seconds

Unstable sources: 3-5 seconds

•

•

Getting list of streams
curl -X GET "http://localhost:8080/api/streams_list"

Getting detailed stream information
curl -X GET "http://localhost:8080/api/stream_get?name=Reg_1010_01_Kanal_ENC"

#!/bin/bash

Checking number of reconnections
retries=$(curl -s "http://localhost:8080/api/stream_get?name=Reg_1010_01_Kanal_ENC" | jq '.stats.input.retries')

if [$retries -gt 10]; then
 echo "WARNING: High number of retries: $retries"
fi

Checking availability of backup sources
valid_backups=$(curl -s "http://localhost:8080/api/stream_get?name=Reg_1010_01_Kanal_ENC" | jq '.stats.input.valid_secondary_inputs')

if [$valid_backups -eq 0]; then
 echo "CRITICAL: No valid backup sources available"
fi

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

•

•

3.11.6 Monitoring Examples

- 54/105 - © Flussonic 2025

Satellite sources: 5-10 seconds

Number of Backup Sources

Minimum: 1 backup source

Recommended: 2-3 backup sources

Maximum: 5 backup sources (to avoid complexity)

Monitoring and Alerts

3.11.9 Conclusion

LiveStreamInput (LSI) ensures high broadcasting reliability through automatic switching between sources. Proper configuration and monitoring of the

module allows minimizing service downtime and ensuring stable broadcasting even when problems occur with the primary signal source.

•

•

•

•

alerts:
 - condition: "stats.input.valid_secondary_inputs == 0"
 severity: "critical"
 message: "No backup sources available"

 - condition: "stats.input.retries > 10"
 severity: "warning"
 message: "High number of reconnections"

 - condition: "stats.input.divergent_inputs > 0"
 severity: "warning"
 message: "Incompatible sources detected"

3.11.9 Conclusion

- 55/105 - © Flussonic 2025

3.12 Transcoder

3.12.1 Transcoder

Overview

Transcoder is a module within mcaster that provides video stream transcoding for various broadcasting scenarios. The module supports both DVB-

compatible CBR (Constant Bit Rate) quality generation and multibitrate (MBR) encoding for OTT (Over-The-Top) services.

Module Application

MAIN USAGE SCENARIOS

Connecting SDI and Compressed Video

Problem: Need to transmit SDI signal in compressed format

Solution: Transcoding SDI to H.264/H.265 for digital broadcasting

Result: Compatibility with modern delivery systems

Bitrate Reduction

Problem: High bitrate of incoming stream

Solution: Transcoding with bitrate optimization

Result: Network bandwidth savings

DVB and OTT Integration

Problem: Different quality requirements for DVB and internet broadcasting

Solution: Creating separate streams with different settings

Result: Optimal quality for each delivery type

Transmitting Unknown Quality Stream to DVB

Problem: Unstable quality of incoming stream

Solution: Normalization and stabilization of parameters

•

•

•

•

•

•

•

•

•

•

•

3.12 Transcoder

- 56/105 - © Flussonic 2025

Result: Guaranteed quality for DVB broadcasting

Operating Modes

DVB CBR (CONSTANT BIT RATE)

Purpose

Mode designed for digital television broadcasting with fixed bitrate, ensuring stable transmission quality.

Configuration

Key DVB Parameters

OTT MBR (MULTI-BITRATE)

Purpose

Mode designed for internet broadcasting with adaptive bitrate, ensuring optimal quality for various network conditions.

•

stream ort {
 input udp://239.0.0.1:1234;
 transcoder external=false gop=28 hw=cpu vb=6100k bframes=3 vcodec=h264 b-pyramid=strict bufsize=6000k rc-lookahead=30 x264opts=videoformat=component:no-
scenecut:force-cfr:colorprim=bt470bg:transfer=bt470bg:colormatrix=bt470bg:weightb=0 interlace=true open_gop=true preset=fast refs=4 size=1920x1080:scale ab=192k
acodec=mp2a atrack=1;
}

Parameter Description Value

vb Video bitrate 6100k

size Resolution 1920x1080

gop Group of pictures size 28

bframes Number of B-frames 3

interlace Interlaced scanning true

ab Audio bitrate 192k

acodec Audio codec mp2a

3.12.1 Transcoder

- 57/105 - © Flussonic 2025

Configuration

Key OTT Parameters

Detailed Configuration Parameters

VIDEO PARAMETERS

Basic Settings

external=false — use built-in transcoder

hw=cpu — hardware acceleration (cpu/gpu)

vcodec=h264 — video codec (h264/h265)

size=1920x1080 — output video resolution

Quality Parameters

vb=6100k — video bitrate

bufsize=6000k — encoding buffer size

rc-lookahead=30 — bitrate control analysis depth

preset=fast — encoding preset (fast/medium/slow)

GOP Parameters

gop=28 — group of pictures size

bframes=3 — number of B-frames

b-pyramid=strict — B-frame pyramid

open_gop=true — open GOP structure

refs=4 — number of reference frames

AUDIO PARAMETERS

ab=192k — audio bitrate

acodec=mp2a — audio codec (mp2a/aac)

atrack=1 — number of audio tracks

DVB-SPECIFIC PARAMETERS

interlace=true — interlaced scanning

x264opts=videoformat=component — video format

colorprim=bt470bg — color space

transfer=bt470bg — gamma correction

colormatrix=bt470bg — color matrix

stream ort {
 input udp://239.0.0.1:1234;
 transcoder vb=600k size=x360 vb=2000k size=x720 vb=5000k size=x2180;
}

Parameter Description Value

vb Video bitrate 600k, 2000k, 5000k

size Resolution x360, x720, x2180

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.12.1 Transcoder

- 58/105 - © Flussonic 2025

Limitations and Features

MODE INCOMPATIBILITY

Important: It's impossible to prepare a stream simultaneously for DVB and OTT. It's necessary to create two separate streams:

TRANSCODER ADAPTABILITY

The module efficiently handles:

Source switching — automatic adaptation to new source

Resolution changes — dynamic encoding parameter adjustment

Codec changes — automatic switching between formats

Output stability — maintaining fixed output parameters

Configuration Examples

HD DVB BROADCASTING

OTT MULTIBITRATE

SD DVB BROADCASTING

LSI INTEGRATION

DVB stream
stream dvb_channel {
 input udp://239.0.0.1:1234;
 transcoder vb=6100k size=1920x1080 gop=28 interlace=true;
 output udp://239.0.0.2:1234;
}

OTT stream
stream ott_channel {
 input udp://239.0.0.1:1234;
 transcoder vb=600k size=x360 vb=2000k size=x720 vb=5000k size=x2180;
 output hls:///var/www/hls/ott;
}

•

•

•

•

stream hd_dvb {
 input udp://239.0.0.1:1234;
 transcoder external=false gop=28 hw=cpu vb=8000k bframes=3 vcodec=h264 b-pyramid=strict bufsize=8000k rc-lookahead=30 x264opts=videoformat=component:no-
scenecut:force-cfr:colorprim=bt709:transfer=bt709:colormatrix=bt709:weightb=0 interlace=false open_gop=true preset=fast refs=4 size=1920x1080:scale ab=256k
acodec=mp2a atrack=2;
 push udp://239.0.0.2:1234;
}

stream ott_multibitrate {
 input udp://239.0.0.1:1234;
 transcoder vb=400k size=x240 vb=800k size=x360 vb=1500k size=x480 vb=2500k size=x720 vb=4000k size=x1080;
}

stream sd_dvb {
 input udp://239.0.0.1:1234;
 transcoder external=false gop=25 hw=cpu vb=4000k bframes=2 vcodec=h264 b-pyramid=strict bufsize=4000k rc-lookahead=25 x264opts=videoformat=component:no-
scenecut:force-cfr:colorprim=bt470bg:transfer=bt470bg:colormatrix=bt470bg:weightb=0 interlace=true open_gop=true preset=fast refs=3 size=720x576:scale ab=128k
acodec=mp2a atrack=1;
 push udp://239.0.0.3:1234;
}

stream resilient_dvb {
 input copy://primary_source source_timeout=10;
 input copy://backup_source;
 title "Resilient DVB Channel";

 transcoder external=false gop=28 hw=cpu vb=6000k bframes=3 vcodec=h264 b-pyramid=strict bufsize=6000k rc-lookahead=30 x264opts=videoformat=component:no-
scenecut:force-cfr:colorprim=bt709:transfer=bt709:colormatrix=bt709:weightb=0 interlace=false open_gop=true preset=fast refs=4 size=1920x1080:scale ab=192k
acodec=mp2a atrack=1;

 push udp://239.0.0.4:1234;
}

3.12.1 Transcoder

- 59/105 - © Flussonic 2025

Troubleshooting

QUALITY ISSUES

Low Output Stream Quality

Increase bitrate (vb) for better quality

Check quality of incoming stream

Optimize encoding settings

Monitor quality metrics

Unstable Bitrate

Check settings for bufsize and rc-lookahead

Ensure stability of incoming stream

Check system load

Optimize encoding preset

PERFORMANCE ISSUES

High CPU Load

Enable hardware acceleration (hw=gpu)

Simplify encoding settings

Use faster preset (preset=veryfast)

Reduce resolution or bitrate

Encoding Delays

Reduce rc-lookahead to decrease delay

Optimize GOP size for quality and delay balance

Check system performance

Consider using external transcoder

Configuration Recommendations

DVB OPTIMIZATION

Use CBR for stable bitrate

Configure correct color spaces for standard

Optimize GOP for decoder compatibility

Check compliance with DVB standards

OTT OPTIMIZATION

Create multiple bitrates for adaptability

Use progressive scanning for web players

Optimize for mobile devices (low bitrates)

Test on various devices

GENERAL RECOMMENDATIONS

Monitor quality in real-time

Optimize settings for specific content

Use hardware acceleration when possible

Plan redundancy for critical streams

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

•

•

•

•

•

•

•

•

•

•

•

•

3.12.1 Transcoder

- 60/105 - © Flussonic 2025

Conclusion

The Transcoder module provides flexible and efficient video stream transcoding for various broadcasting scenarios. Support for both DVB CBR and

OTT MBR modes makes it a universal solution for modern broadcasting systems. Adaptability to incoming stream changes and stability of output

parameters ensure reliable operation in complex broadcasting conditions.

3.12.1 Transcoder

- 61/105 - © Flussonic 2025

3.12.2 DVB-compliant CBR

Taking any supported source, Transcoder can prepare the SPTS to send to DVB network that requires video signal to fit into the constant bitrate

bandwidth. The stream is transcoded on the CPU and packaged in MPEG-TS in compliance with ETSI TR 101 290.

NVENC transcoding doesn't output stable bitrate (CBR) sufficient for DVB standard requirements. We only offer encoding on the CPU.

Suppose you need to prepare SPTS with Full HD resolution and a total bitrate of 6 700 Kbps, the audio PID — 192 Kbps and the video — 6 100 Kbps

from an HLS stream. Here, kilobit is 1000 bits, not 1024. You can configure the Flussonic Media Server via web interface or configuration file.

In the web interface

STEP 1. CONFIGURE THE STREAM TRANSCODING TO CBR

1) At the Streams page, open the stream settings by clicking on the stream name.

2) Move to the Transcoder tab and click Enable Transcoder.

3) In the Video section, specify HD Television as Target.

4) Apply the settings by clicking Save.

STEP 2. SEND THE STREAM TO A MULTICAST GROUP

1) In the stream settings, go to the Output tab in the Push live video to certain URLs section and specify the multicast group address as follows:

udp://239.172.0.1:1234 .

2) Apply the settings by clicking Save:

In the configuration file

STEP 1. CONFIGURE THE STREAM TRANSCODING TO CBR

In the stream settings, add transcoder and configure it as follows:

Here target=hdtv will automatically enable 1920x1080 output with 3mbit on video pid.

STEP 2. SEND THE STREAM TO A MULTICAST GROUP

In the stream settings, add push and specify the multicast group address: push udp://239.172.0.1:1234 .

Step 3. Checking the stream quality in the DVB Inspector

Use a tool, such as DVB Inspector (see Checking the stream quality in the DVB Inspector) or any other analyzer that checks the stream for

compliance with the ETSI TR 101 290 standard.

1) Record a couple of minutes of a stream using the following command on the terminal: /opt/flussonic/contrib/multicast_capture.erl udp://

239.172.0.1:1234 spts-cbr-output.ts . Finish recording by pressing Ctrl+C.

2) Download the resulting segment spts-cbr-output.ts to the local machine.

Warning

stream spts-cbr {
 input file://vod/bunny.mp4;
 transcoder target=hdtv;
}

3.12.2 DVB-compliant CBR

- 62/105 - © Flussonic 2025

3) Check the stream segment quality in the в DVB Inspector.

You will get the SPTS at a constant bit rate (CBR) that can be transmitted:

to a QAM modulator or scrambler to further be sent to the cable network

to a multiplexer to prepare MPTS

•

•

3.12.2 DVB-compliant CBR

- 63/105 - © Flussonic 2025

The default step value in DVB Inspector (View > Filter > Steps) smooths out the bitrate of separate PIDs over long durations of segments. It means that

the longer the duration of the recorded stream segment, the smoother becomes the bitrate of separate PIDs. For instance, if you record 10 minutes of a

stream and open it in the DVB Inspector, you will see a smooth graph with consistent bitrates for separate PIDs. If you set the step to 500 on the same

segment, you will notice slight fluctuations in the bitrates of separate PIDs. These minor fluctuations (around one Kbps) don't affect the outcome, and the

stream remains CBR.

Note

3.12.2 DVB-compliant CBR

- 64/105 - © Flussonic 2025

3.13 SCTE Processor

3.13.1 Overview

SCTE Processor is a module within mcaster that ensures seamless integration of advertising markers in SCTE35 and SCTE104 formats. The module

works automatically without additional configuration and solves tasks of converting between different advertising marker formats, as well as

compensating for time marker distortions that occur in television paths.

3.13.2 Supported Formats

SCTE35

Application: MPEG-TS, HLS, DASH and other containers with compressed video

Structure: Binary format with PSI/SI tables

Location: Embedded in transport stream

SCTE104

Application: SDI streams

Structure: UDP/IP-based protocol

Location: Separate data stream

3.13.3 Operating Principles

Automatic Conversion

The module automatically detects the format of incoming markers and performs conversion: - SCTE35 → SCTE104: For SDI outputs - SCTE104 →

SCTE35: For MPEG-TS/HLS/DASH outputs

Time Distortion Compensation

SCTE Processor compensates for various types of time marker distortions:

DISTORTIONS IN TELEVISION PATHS

Problem: Time markers in SDI or MPEG-TS may be corrupted

Result: Advertising markers point to non-existent frames

Solution: Automatic compensation and correction of markers

TRANSCODING DISTORTIONS

Problem: Transcoding subsystem changes time markers

Result: Shift in advertising boundaries

Solution: Compensation for changes while maintaining accuracy

CHANGES IN LSI MODULE

Problem: LSI changes time markers when switching sources

Result: Loss of advertising marker synchronization

Solution: Automatic time marker alignment

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.13 SCTE Processor

- 65/105 - © Flussonic 2025

3.13.4 Processing Architecture

Workflow Diagram

Processing Stages

Marker Detection — automatic identification of SCTE35 or SCTE104 format

Format Conversion — conversion between SCTE35 and SCTE104

Time Compensation — correction of distorted time markers

Validation — verification of processed marker correctness

Insertion — placement of markers in output stream

3.13.5 Automatic Operation

Out-of-the-Box Operation

The module requires no additional configuration and works automatically: - Auto-detection of marker formats - Auto-conversion between formats -

Auto-compensation of time distortions - Auto-validation of results

Integration with Other Modules

SCTE Processor automatically integrates with: - Transcoder — compensates for time marker changes - LSI module — aligns markers when switching

sources - Multiplexer — ensures correct marker insertion

3.13.6 Technical Features

Time Compensation Algorithms

ADAPTIVE COMPENSATION

Analysis of patterns in time distortions

Prediction of future changes

Dynamic adjustment of markers

MARKER VALIDATION

Synchronization check with video stream

Verification of boundaries for advertising blocks

Data integrity control

Performance

Minimal processing delay

High throughput

Low resource consumption

3.13.7 Monitoring and Diagnostics

Operation Metrics

Input Stream → SCTE Detection → Format Conversion → Time Compensation → Output Stream
 ↓ ↓ ↓ ↓ ↓
 SCTE35/104 Identify Type Convert Format Fix Timestamps SCTE35/104

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

{
 "stats": {
 "input": {
 "ad_splices_ingested": 1250 // Number of processed SCTE markers

3.13.4 Processing Architecture

- 66/105 - © Flussonic 2025

3.13.8 Recommendations

Operation Optimization

Stable sources — provide more accurate time markers

Quality SDI cables — reduce signal distortions

Proper transcoder configuration — minimize time changes

Metrics monitoring — allows early detection of problems

Parameter Monitoring

stats.input.ad_splices_ingested — number of processed markers

3.13.9 Conclusion

SCTE Processor provides reliable and accurate processing of advertising markers in the mcaster system. The module's automatic operation,

intelligent time distortion compensation, and seamless integration with other system components make it an indispensable tool for professional

broadcasting with advertising inserts.

 }
 }
}

•

•

•

•

•

3.13.8 Recommendations

- 67/105 - © Flussonic 2025

3.14 SDI Decoder

The SDI decoder module is designed to send video to the SDI path, received from any other source: SDI, NDI, ST2110, compressed video from DVB or

internet.

3.14.1 Simple Configuration

Configuration can be quite simple:

The Dektec card identifier is obtained in the same way as for the SDI coder module.

3.14.2 Embedded Audio in Television

The module supports embedding radio into television:

3.14.3 Supported Input Sources

The SDI decoder module can receive video from the following sources:

SDI streams

NDI streams

ST2110 streams

Compressed video from DVB

Internet streams

3.14.4 Audio Configuration

When configuring audio embedding, you can specify:

Number of channels for each track

Sample type (PCM)

Track number

Video format (PAL, NTSC, etc.)

stream test {
 input udp://239.0.0.1:1234;
 push dektec://2174220025:2 video_format=pal;
}

stream Decoder_Rossia24 {
 input mixer://Fed_asi_board1_port4_PLP1_T2MI_MUX1_1070,Fed_asi_board1_port3_PLP0_T2MI_MUX1_1120,Fed_asi_board1_port3_PLP0_T2MI_MUX1_1110 mixer_strategy=all
sync=dts;
 meta comment "Decoding Rossiya-24+Mayak+VestiFM for GTRK";
 push {
 url dektec://2174223190:2;
 push_audio_tracks {
 channels 1,2;
 sample_type pcm;
 track a1;
 }
 push_audio_tracks {
 channels 3,4;
 sample_type pcm;
 track a2;
 }
 push_audio_tracks {
 channels 5,6;
 sample_type pcm;
 track a3;
 }
 video_format pal;
 }
}

•

•

•

•

•

•

•

•

•

3.14 SDI Decoder

- 68/105 - © Flussonic 2025

3.14.5 Hardware Identification

To work with Dektec cards, you need to specify their identifier in the format:

Where: * ID - unique card identifier * PORT - output port number

3.14.6 Decklink SDI Output

Mcaster can not only capture but also output streams to Decklink SDI or HDMI capture cards.

Basic Decklink Output Configuration

For output to Decklink, specify the push decklink:// parameter:

Mcaster decodes and then transmits the stream to the specified device number or port on the card (e.g., 0). If necessary, you can specify the

deinterlace=true option to eliminate interlacing.

Decklink Card Modes

Usually, a Decklink card supports a limited set of modes. Each mode is a combination of frame size and frame rate, encoded in Decklink format. For

example, 1080i50 means frame size 1920x1080 and frame rate 50000/1000 FPS. When sending a stream to a Decklink card, you can set the mode

value in the format parameter:

Possible Decklink operating modes are described in the API documentation.

Duplex Mode Operation

To specify Duplex mode for a DeckLink SDI card, allowing you to choose input and output direction, use the following configuration in global DeckLink

settings:

The example above shows semi-duplex mode configuration for a DeckLink Duo 2 card.

DeckLink Quad 2 and DeckLink Duo 2 cards have non-standard numbering when mapping physical and logical ports, which affects duplex mode

configuration.

To configure a DeckLink Quad 2 card so that all ports are used either as input or output, the card should operate in two_half mode:

3.14.7 VBI Teletext Output (Important for Legacy SD Systems)

VBI teletext output is a critically important feature for legacy SD broadcasting systems that still transmit analog teletext. Mcaster can pass teletext

from MPEG-TS to analog streams in SD quality that are broadcast via Decklink or DekTec SDI cards. Teletext is added to VBI (vertical blanking

interval) of an output stream.

dektec://[ID]:[PORT]

stream test {
 input udp://239.0.0.1:1234;
 push decklink://0;
}

stream test {
 input udp://239.0.0.1:1234;
 push decklink://0 format=1080i50;
}

decklink {
 duplex_mode two_half;
}

decklink {
 duplex_mode two_half;
}

3.14.5 Hardware Identification

- 69/105 - © Flussonic 2025

https://flussonic.com/doc/api/reference/#tag/stream/operation/stream_save-7Cbody-7Cpushes__4-7Cvideo_format

Prerequisites

An input MPEG-TS stream containing Teletext B

An output stream containing SD video that Mcaster will transmit to a Decklink or DekTec SDI card

VBI Teletext Configuration

To pass a teletext track to SDI, specify numbers of the lines where the teletext in the output stream will be packed:

In the example, the vbi_lines option specifies six figures separated by colons — these are numbers of VBI lines that will carry a teletext track. The

first three are VBI lines passed in the first half-frame and the next three figures are lines in the second half-frame.

Important Notes

If the teletext in your stream does not fit into the specified lines, it will not appear in the output stream

In this case, specify more lines in vbi_lines

This feature is essential for integration with legacy SD broadcasting systems that continue to use analog teletext

VBI teletext is particularly important for maintaining compatibility with older television equipment

This functionality is especially critical for legacy SD broadcasting systems that still transmit analog teletext and require VBI integration for proper

operation.

•

•

stream out {
 input file://vod/mpegts.ts;
 push decklink://1 format=pal vbi_lines=ttxt:7:8:9:319:320:321;
}

•

•

•

•

Note

3.14.7 VBI Teletext Output (Important for Legacy SD Systems)

- 70/105 - © Flussonic 2025

3.15 ASI Push

The ASI push module as part of Mcaster not only captures MPTS streams but also passes them to DekTec ASI cards for output to ASI interfaces.

3.15.1 Purpose

This module is designed for:

Outputting MPTS streams to ASI interfaces

Integration with broadcast equipment

Professional video distribution systems

Cable and satellite headend applications

3.15.2 Configuration

To enable pushing to ASI, add the pusher configuration like push dektec-asi://serial_number:port to the multiplexer:

3.15.3 Hardware Requirements

For ASI output, DekTec ASI cards are required. They provide:

Professional-grade ASI interfaces

High reliability for broadcast applications

Support for various bitrates

Multiple output ports

3.15.4 Supported Formats

The module supports:

MPTS (Multi-Program Transport Stream) output

Various video codecs (H.264, H.265)

Multiple audio formats

Different bitrates up to 270 Mbps

•

•

•

•

transponder mux1 {
 bitrate 10000k;
 push dektec-asi://2174207373:3;
 program 1 {
 source channel_1;
 title test;
 lcn 0;
 service_type digital_tv_avc_hd;
 pid 5032 pmt pmt;
 pid 5033 a1;
 pid 5034 v1 bitrate=6000 pcr;
 pid 5035 l1;
 }
}
stream channel_1 {
 input fake://fake;
}

•

•

•

•

•

•

•

•

3.15 ASI Push

- 71/105 - © Flussonic 2025

3.15.5 Configuration Parameters

DekTec Card Identification

The DekTec card is identified by:

serial_number - unique card identifier

port - output port number

Stream Configuration

Each program in the multiplexer can be configured with:

source - input stream name

title - program title

lcn - logical channel number

service_type - type of service

pid - program identifier with options

3.15.6 Applications

ASI push is used in various scenarios:

Broadcast television distribution

Cable headend systems

Satellite uplink facilities

Professional video production

Content distribution networks

3.15.7 Monitoring

The module provides monitoring capabilities for:

Output stream status

Bitrate monitoring

Error detection

Hardware status

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.15.5 Configuration Parameters

- 72/105 - © Flussonic 2025

3.16 Multiplexer

Multiplexer is the most important element of the entire system for delivering television to DVB networks.

3.16.1 Main Tasks

It covers the following tasks:

Preparing MPEG-TS stream in compliance with DVB standard requirements for CBR, PCR accuracy, HRD buffer, etc.

Packaging multiple TV channels into MPTS while maintaining uniform channel interleaving

Forming all service tables: PAT, PMT, SDT, EIT, NIT necessary for a full DVB service

3.16.2 Configuration Example

3.16.3 Configuration Details

Program Sections

In the multiplexer configuration, program sections are specified - these are individual TV channels. They must reference a stream configured in

Mcaster.

Program Parameters

title - TV channel name

eit_title - optional title that goes to EPG (Electronic Program Guide)

•

•

•

transponder plp0 {
 provider "Central TV";
 bitrate 22600k;
 ts_stream_id 1;
 network 0x3578 original=0x2283 name="DTT - National TV";
 time_offset RUS:10 time_of_change=2018-03-23T03:00:00Z local_time_offset=+0300 next_time_offset=+0300;
 version psi 25;
 ts_descriptor 0x7F 040022830325;
 push udp://streaming0@238.238.31.1:1111 multicast_loop tos=0;
 program 1010 {
 source Switcher_1010_ort;
 title "01 ORT";
 eit_title Ort_(+0);
 lcn 1;
 service_type digital_tv_avc_sd;
 pid 1010 pmt;
 pid 1011 v1 pcr bitrate=2720 ;
 pid 1012 a1 ;
 pid 1014 l1 codec=ttxt ;
 pid 1015 l1 codec=scte35 ;
 pid 1016 bypass es_info=6F030010E1 stream_type=5;
 pid 1017 bypass es_info=140D000B00000080000000FFFFFFFF52010B130500002F520066020123 stream_type=11;
 pid 1018 bypass es_info=52010D stream_type=12;
 }
 program 1040 {
 source Switcher_1040_04_Uchebniy;
 title "04 Educational";
 eit_title Uchebniy_(+0);
 lcn 4;
 service_type digital_tv_avc_sd;
 pid 1040 pmt;
 pid 1041 v1 pcr bitrate=2750 ;
 pid 1042 a1;
 pid 1044 l1 codec=ttxt ;
 pid 1045 l1 codec=scte35 ;
 pid 1046 bypass es_info=6F030010E1 stream_type=5;
 pid 1047 bypass es_info=140D000B00000080000000FFFFFFFF52010B130500002F520066020123 stream_type=11;
 pid 1048 bypass es_info=52010D stream_type=12;
 }
 other @plp1;
 eit {
 source bypass://EIT_source_MUX1_plp0;
 max_bitrate 300;
 }
}

•

•

3.16 Multiplexer

- 73/105 - © Flussonic 2025

lcn (Logical Channel Number) - sequential number in the program list, transmitted in NIT table

service_type - service type, specified in SDT table

PID Configuration

The PID list is rigid, fixed, not dynamic and will not change depending on the source.

PID OPTIONS

pmt - PMT table will go in this PID

pcr - PCR (Program Clock Reference) will be marked on this PID

codec - you can separately specify the PID codec

bitrate - you can force the PID bitrate

bypass - PIDs that are passed through without demultiplexing at the input

BYPASS PID PARAMETERS

For bypass PIDs, you can specify MPEG-TS packaging parameters:

es_info - elementary stream information

stream_type - stream type

Additional Parameters

other - allows referencing other multiplexers for SDT formation

eit - EIT table formation:

From file

From stream where program schedule is captured

3.16.4 Monitoring Parameters

The module provides the following parameters for monitoring:

Main Metrics

payload - payload bytes count (multiplexer_payload)

encoded - encoded bytes count (multiplexer_encoded)

fillers - filler packets count (multiplexer_fillers)

stuffing - stuffing packets count (multiplexer_stuffing)

Additional Metrics

trimmed_bytes - trimmed bytes count (multiplexer_trimmed_bytes)

trimmed_frames - trimmed frames count (multiplexer_trimmed_frames)

ts_overflow - TS stream overflow (boolean)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.16.4 Monitoring Parameters

- 74/105 - © Flussonic 2025

3.16.5 Service Tables

Multiplexer forms all necessary DVB service tables:

PAT (Program Association Table) - program association table

PMT (Program Map Table) - program map table

SDT (Service Description Table) - service description table

EIT (Event Information Table) - event information table

NIT (Network Information Table) - network information table

3.16.6 DVB Standard Requirements

The module ensures compliance with the following requirements:

CBR (Constant Bit Rate) - constant transmission rate

PCR accuracy - Program Clock Reference accuracy

HRD buffer - hypothetical decoder buffer requirements

Uniform channel interleaving in multiplex

3.16.7 Electronic Program Guide (EPG)

Mcaster can generate MPTS streams with an embedded electronic program guide (EPG). You no longer need to use an additional EPG generator and

remultiplexer to add EPG to TV channels.

In MPEG-TS streams, the EPG is stored in the Event Information Tables (EIT). Mcaster can populate EIT in the output stream.

Two Ways to Add EPG

There are two ways for Mcaster to add EPG to the output MPTS:

Copy EIT from source if the program guide in it is satisfiable

Take the EPG from XMLTV files and convert it into EIT for both current multiplexer (Actual) and other multiplexers in a network (Other)

Copy EPG from Source

To copy EIT from the source MPEG-TS stream, add EIT options to the multiplexer configuration:

Replace the STREAMNAME with the name of the source stream in Mcaster configuration.

Import EPG from XMLTV

To import EPG from XMLTV files, configure the multiplexer as follows:

•

•

•

•

•

•

•

•

•

1.

2.

transponder tp1 {
 eit {
 source copy://STREAMNAME;
 }
}

transponder tp1 {
 program 100 {
 title "program1";
 eit_title "example_title";
 };
 other @tp2;
 eit {
 xmltv_url xmltv_dir1;
 interval pf actual=1 other=2;
 interval schedule other=20;
 }
}

3.16.5 Service Tables

- 75/105 - © Flussonic 2025

CONFIGURATION PARAMETERS

title — sets the channel ID value from the channel id in the XMLTV file

eit_title — sets the channel name from the display-name in XMLTV

xmltv_url — sets the path to the directory with XMLTV files (can be a single file)

interval pf|schedule actual=<INTERVAL 1> other=<INTERVAL 2> — sets how often EIT tables will be sent

EPG RELOADING

When EPG data is updated in the XMLTV file, reload it using the API:

IMPORTANT NOTES

The EPG is packed into the target bitrate

EIT version changes when schedule is updated (number from 0 to 63)

XMLTV files might contain overlapping transmissions - Mcaster includes the earlier one

Default intervals: actual (present/following) is 2 seconds, other (present/following) is 4 seconds, actual (schedule) and other (schedule) are

60 seconds

The description of the XMLTV file format can be found at xmltv.org, and broadcast schedules in this format are available at teleguide.info.

•

•

•

•

POST /streamer/api/v3/multiplexers/{name}/xmltv_upload

•

•

•

•

Note

3.16.7 Electronic Program Guide (EPG)

- 76/105 - © Flussonic 2025

http://www.teleguide.info/download/new3/xmltv.xml.gz

3.17 TwinCast Recovery

The TwinCast Recovery module provides automatic failover functionality for multicast streaming with zero downtime. It ensures maximum reliability

for content delivery by automatically switching between primary and backup servers without interrupting the broadcast.

3.17.1 Overview

TwinCast Recovery is designed for content providers who need to deliver multicast streams with maximum reliability. The module implements a

sophisticated standby mechanism that monitors the primary server and automatically activates the backup server when needed.

Key Features

Zero Downtime Failover: Automatic switching without broadcast interruption

Standby Mode: Backup servers monitor primary server status

IGMP Compatibility: Works with any IGMP receiver

Automatic Recovery: Seamless return to primary server when available

Real-time Monitoring: Continuous status monitoring via stats.push[0].standby_status

3.17.2 How Standby Mode Works

The standby mode operates through a sophisticated monitoring and switching mechanism:

Primary Server Operation

Active Broadcasting: Primary server sends streams to multicast group address

Continuous Monitoring: Backup server constantly monitors multicast group activity

Status Verification: Backup server checks if any server is sending multicast packets

Backup Server Operation

Standby State: Backup server remains in standby mode while primary is active

Automatic Activation: When primary server goes offline, backup starts streaming

Automatic Deactivation: When primary returns, backup stops and returns to standby

Failover Process

Detection: Backup server detects absence of multicast packets from primary

Activation: Backup server immediately starts streaming to multicast group

Recovery: When primary server returns, backup automatically stops and returns to standby

Monitoring: Continuous monitoring ensures immediate response to any issues

•

•

•

•

•

1.

2.

3.

1.

2.

3.

•

•

•

•

3.17 TwinCast Recovery

- 77/105 - © Flussonic 2025

3.17.3 Configuration

Basic Setup

Configure TwinCast Recovery through the Mcaster Admin UI:

Access Stream Settings: Go to the Output tab of stream settings

Configure Primary Server: In the URL column of Push live video to certain URLs section, specify: udp://239.1.1.1:1234 Where:

239.1.1.1 - multicast group address

1234 - port for Mcaster to listen to

Add Backup Server: Configure backup server with same multicast group settings

Enable Standby Mode: Open Options and enable standby mode by checking Standby box

Apply Changes: Click Save to activate configuration

Advanced Configuration

MULTICAST GROUP SETTINGS

NETWORK CONSIDERATIONS

Multicast Routing: Ensure proper multicast routing configuration

IGMP Snooping: Configure switches for optimal multicast delivery

Bandwidth Planning: Account for both primary and backup streams

Network Isolation: Consider VLAN configuration for multicast traffic

3.17.4 Monitoring and Status

Standby Status Monitoring

Monitor the standby status using the stats.push[0].standby_status field:

Status Values

active: Server is currently broadcasting to multicast group

waiting: Server is monitoring but not broadcasting (standby mode)

Monitoring Best Practices

Regular Status Checks: Monitor standby_status field regularly

Log Analysis: Review logs for failover events

Performance Metrics: Track switching times and reliability

1.

2.

3.

4.

5.

6.

7.

stream primary_stream {
 input udp://239.0.0.1:1234;
 push udp://239.1.1.1:1234;
}

stream backup_stream {
 input udp://239.0.0.1:1234;
 push udp://239.1.1.1:1234 standby;
}

•

•

•

•

{
 "stats": {
 "push": [
 {
 "standby_status": "active|waiting"
 }
]
 }
}

•

•

•

•

•

3.17.3 Configuration

- 78/105 - © Flussonic 2025

Alert Configuration: Set up alerts for status changes

3.17.5 Use Cases

Content Provider Redundancy

Satellite Broadcasting: Ensure continuous satellite feed delivery

Cable Networks: Maintain service during server maintenance

Live Events: Prevent broadcast interruption during critical events

24/7 Operations: Maintain service availability around the clock

Enterprise Applications

Corporate Broadcasting: Reliable internal video distribution

Educational Institutions: Uninterrupted lecture streaming

Government Communications: Reliable emergency broadcast systems

3.17.6 Troubleshooting

Common Issues

BACKUP SERVER NOT ACTIVATING

Check Network Connectivity: Verify multicast routing

Verify Standby Configuration: Ensure standby mode is enabled

Monitor Logs: Check for error messages in system logs

Test Multicast Group: Verify multicast group accessibility

PRIMARY SERVER NOT DETECTED

Network Configuration: Check multicast group settings

Firewall Rules: Ensure multicast traffic is allowed

IGMP Configuration: Verify IGMP snooping on switches

Server Status: Confirm primary server is broadcasting

FREQUENT FAILOVERS

Network Stability: Check for network instability

Server Performance: Monitor primary server resources

Multicast Congestion: Check for multicast traffic issues

Configuration Conflicts: Verify no conflicting multicast groups

Diagnostic Commands

3.17.7 Performance Optimization

Switching Speed Optimization

Network Latency: Minimize network latency between servers

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Check multicast group status
netstat -g

Monitor multicast traffic
tcpdump -i eth0 udp port 1234

Verify IGMP membership
cat /proc/net/igmp

•

3.17.5 Use Cases

- 79/105 - © Flussonic 2025

Detection Time: Optimize multicast packet detection timing

Buffer Configuration: Adjust buffer sizes for optimal performance

CPU Resources: Ensure adequate CPU resources for monitoring

Resource Management

Memory Usage: Monitor memory consumption during failover

CPU Utilization: Track CPU usage during standby monitoring

Network Bandwidth: Plan for multicast traffic requirements

Storage I/O: Consider storage requirements for logging

3.17.8 Security Considerations

Network Security

Multicast Authentication: Implement multicast authentication if required

Network Isolation: Use VLANs to isolate multicast traffic

Access Control: Restrict access to multicast configuration

Monitoring: Monitor for unauthorized multicast traffic

Configuration Security

Secure Configuration: Protect configuration files

Access Logging: Log all configuration changes

Backup Security: Secure backup of configuration files

Update Procedures: Follow secure update procedures

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.17.8 Security Considerations

- 80/105 - © Flussonic 2025

3.18 RTMP Pusher

Mcaster allows you to publish any stream to an external server using RTMP protocol.

Social media platforms use RTMP to organize live broadcasts, which means you can use Mcaster to send your streams to social media (it can be

several at once).

3.18.1 Use Cases

Receiving video from a mobile reporter and sending directly to several social media platforms

Broadcasting video from CCTV cameras

Broadcasting own programs in social media, including scheduled broadcasts

Stream keys can expire. Check the terms of the service before publishing the stream.

3.18.2 Publish to YouTube

To publish a stream to YouTube:

Go to YouTube Studio and create a new live stream

Copy the stream URL and stream key

In Mcaster configuration, add RTMP push settings

Configure the stream to push to YouTube's RTMP server

3.18.3 Publish to Facebook

To publish a stream to Facebook:

Go to Facebook Live and create a new live stream

Copy the server URL and stream key

In Mcaster configuration, add RTMP push settings

Configure the stream to push to Facebook's RTMP server

3.18.4 Publish to OK

To publish a stream to OK.ru:

Go to OK.ru broadcast section and create a new stream

Copy the server URL and broadcast key

In Mcaster configuration, add RTMP push settings

Configure the stream to push to OK.ru's RTMP server

3.18.5 Configuration Example

•

•

•

Warning

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

4.

stream youtube_stream {
 input udp://239.0.0.1:1234;
 push rtmp://a.rtmp.youtube.com/live2/YOUR_STREAM_KEY;
}

stream facebook_stream {
 input udp://239.0.0.1:1234;
 push rtmp://live-api.facebook.com:80/rtmp/YOUR_STREAM_KEY;

3.18 RTMP Pusher

- 81/105 - © Flussonic 2025

3.18.6 Multiple Destinations

You can push the same stream to multiple destinations simultaneously:

3.18.7 Monitoring

Mcaster provides monitoring capabilities for RTMP push operations:

Connection status to each destination

Push statistics and metrics

Error reporting for failed connections

Automatic reconnection on connection loss

}

stream ok_stream {
 input udp://239.0.0.1:1234;
 push rtmp://vsu.mycdn.me/input/YOUR_STREAM_KEY;
}

stream multi_social {
 input udp://239.0.0.1:1234;
 push rtmp://a.rtmp.youtube.com/live2/YOUTUBE_KEY;
 push rtmp://live-api.facebook.com:80/rtmp/FACEBOOK_KEY;
 push rtmp://vsu.mycdn.me/input/OK_KEY;
}

•

•

•

•

3.18.6 Multiple Destinations

- 82/105 - © Flussonic 2025

3.19 SRT Egress

Mcaster supports sending video streams via SRT protocol. SRT (Secure Reliable Transport) is widely used for delivering video over the Internet or

satellite networks, as it guarantees low latency while offering content delivery guarantees.

3.19.1 Overview

SRT Egress module allows you to push streams from Mcaster to external servers using SRT protocol. This is particularly useful for:

Delivering video content to remote servers

Broadcasting to CDN networks

Satellite transmission

Low-latency video distribution

3.19.2 Basic Configuration

To configure SRT egress, use the push directive in your stream configuration:

3.19.3 URL Formats

SRT push URLs can be configured in two formats:

SRT Parameters in URL Parameters

SRT Parameters in URL Query String

Where: * SRT-HOST - IP address of the destination server * SRT_PORT - SRT port number * STREAM_NAME - name of the publishing location on the

destination server

3.19.4 Configuration Examples

Simple SRT Push

SRT Push with Parameters

•

•

•

•

stream example_stream {
 input udp://239.0.0.1:1234;
 push srt://destination-server.com:9998 streamid="#!::r=stream-name,m=publish";
}

srt://SRT-HOST:SRT_PORT streamid="#!::r=STREAM_NAME,m=publish"

srt://SRT-HOST:SRT_PORT?streamid=#!::r=STREAM_NAME,m=publish

stream srt_output {
 input udp://239.0.0.1:1234;
 push srt://example.com:9998 streamid="#!::r=my-stream,m=publish";
}

stream srt_secure {
 input udp://239.0.0.1:1234;
 push srt://example.com:9998?streamid=#!::r=secure-stream&passphrase=1234567890;
}

3.19 SRT Egress

- 83/105 - © Flussonic 2025

https://en.wikipedia.org/wiki/Secure_Reliable_Transport

Multiple SRT Destinations

3.19.5 SRT Parameters

You can configure various SRT parameters for optimal performance:

Security Parameters

passphrase - encryption passphrase for secure transmission

pbkeylen - public key length for encryption

Performance Parameters

latency - maximum latency tolerance

rcvbuf - receive buffer size

sndbuf - send buffer size

mss - maximum segment size

Example with Parameters

3.19.6 Stream ID Format

The streamid parameter follows a specific format:

Where: * r=STREAM_NAME - specifies the stream name on the destination server * m=publish - specifies the mode (publish for sending)

3.19.7 Use Cases

CDN Distribution

Satellite Transmission

Remote Studio

stream multi_srt {
 input udp://239.0.0.1:1234;
 push srt://server1.com:9998 streamid="#!::r=stream1,m=publish";
 push srt://server2.com:9999 streamid="#!::r=stream2,m=publish";
 push srt://server3.com:10000?streamid=#!::r=stream3&passphrase=secret123;
}

•

•

•

•

•

•

stream optimized_srt {
 input udp://239.0.0.1:1234;
 push srt://example.com:9998?streamid=#!::r=optimized-stream&passphrase=secret&latency=120&rcvbuf=8192&sndbuf=8192;
}

#!::r=STREAM_NAME,m=publish

stream cdn_output {
 input udp://239.0.0.1:1234;
 push srt://cdn-provider.com:9998 streamid="#!::r=live-channel,m=publish";
}

stream satellite {
 input udp://239.0.0.1:1234;
 push srt://satellite-gateway.com:9998?streamid=#!::r=broadcast&passphrase=satellite-key;
}

stream remote_studio {
 input udp://239.0.0.1:1234;

3.19.5 SRT Parameters

- 84/105 - © Flussonic 2025

3.19.8 Error Handling

SRT Egress module provides automatic error handling:

Automatic reconnection on connection loss

Retry mechanisms for failed connections

Error logging for troubleshooting

Graceful degradation when destination is unavailable

3.19.9 SRT Playback

Mcaster also supports playing SRT streams from the server. This allows clients to receive video streams via SRT protocol.

Basic SRT Playback Configuration

To configure SRT playback for a single stream, use the srt_play block in your stream configuration:

To play the stream, clients use the following URL format:

Where: * SERVER-IP - IP address of your Mcaster server * SRT_PORT - SRT port specified for playback

For the example above, the playback URL would be: srt://localhost:9998

Combined Publish and Play

You can configure a single SRT port for both publishing and playing a stream:

For playback, use the following URL format:

Where: * m=request - specifies playback mode

The URL for this example would be: srt://localhost:9998?streamid=#!::m=request

Global SRT Playback Port

To enable one SRT port for playing multiple streams, use srt_play as a global setting:

 push srt://studio-server.com:9998 streamid="#!::r=studio-feed,m=publish";
}

•

•

•

•

stream example_stream {
 input udp://239.0.0.1:1234;
 srt_play {
 port 9998;
 }
}

srt://SERVER-IP:SRT_PORT

stream example_stream {
 input publish://;
 srt 9998;
}

srt://SERVER-IP:SRT_PORT?streamid=#!::m=request

srt_play {
 port 9998;
}
stream example_stream {
 input udp://239.0.0.1:1234;
}
stream another_stream {
 input udp://239.0.0.1:1235;
}

3.19.8 Error Handling

- 85/105 - © Flussonic 2025

To play streams over the global port, use the following URL format:

Where: * r=STREAM_NAME - specifies the stream name

For the example above: * example_stream : srt://localhost:9998?streamid=#!::r=example_stream * another_stream : srt://localhost:9998?

streamid=#!::r=another_stream

SRT Playback with Parameters

You can configure SRT playback with additional parameters:

The playback URL with parameters:

URL Format Summary

srt://SERVER-IP:SRT_PORT?streamid=#!::r=STREAM_NAME

stream secure_stream {
 input udp://239.0.0.1:1234;
 srt_play {
 port 9998;
 passphrase 0987654321;
 }
}

srt://SERVER-IP:9998?passphrase=0987654321&streamid=#!::m=request

Playback URL Configuration Description

srt://SERVER-IP:PORT srt_play { port PORT; } Single stream per port

srt://SERVER-IP:PORT?streamid=#!::m=request srt PORT; Combined publish and play

srt://SERVER-IP:PORT?streamid=#!::r=STREAM_NAME Global srt_play Multiple streams per port

srt://SERVER-IP:PORT?streamid=#!::r=STREAM_NAME,m=request Global srt_play +

srt_publish

Global port with publish

streams

3.19.9 SRT Playback

- 86/105 - © Flussonic 2025

3.20 OTT Packager

Mcaster OTT Packager is designed to prepare transcoded content for playback on mobile devices and players. It processes video streams after the

transcoder module to create adaptive streaming formats suitable for various devices and network conditions.

3.20.1 Overview

The OTT Packager module takes transcoded video streams and packages them into industry-standard adaptive streaming formats. This enables

efficient content delivery to mobile devices, smart TVs, and web browsers with optimal quality based on available bandwidth.

Key Features

Multiple Format Support: HLS, DASH, and MSS protocols

Adaptive Bitrate Streaming: Automatic quality selection based on network conditions

CDN Integration: Works with Flussonic CDN and other CDN providers

Mobile Optimization: Optimized for mobile device playback

Archive Support: Handles both live and archived content

3.20.2 Supported Protocols

HLS (HTTP Live Streaming)

HLS is Apple's adaptive streaming protocol, widely supported across devices and platforms.

Advantages:

Universal compatibility with iOS, Android, and web browsers

Automatic quality adaptation

Simple implementation and debugging

Use Cases:

Mobile applications

Web browsers

Smart TVs and set-top boxes

DASH (Dynamic Adaptive Streaming over HTTP)

DASH is an international standard for adaptive streaming, offering high efficiency and flexibility.

Advantages:

ISO standard with broad industry support

Efficient bandwidth utilization

Advanced features for live and VOD content

Use Cases:

High-quality streaming services

Multi-platform applications

Professional broadcasting

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.20 OTT Packager

- 87/105 - © Flussonic 2025

MSS (Microsoft Smooth Streaming)

MSS is Microsoft's adaptive streaming technology, optimized for Windows platforms.

Advantages:

Excellent Windows ecosystem integration

Advanced DRM support

Professional-grade features

Use Cases:

Windows applications

Xbox platforms

Enterprise streaming solutions

3.20.3 Configuration

Basic Configuration

Where: * segment_duration - segment duration in seconds * segments - number of segments kept in memory and available in playlist

3.20.4 Playback URLs

After configuring the OTT Packager, you can play streams using the following URLs:

HLS Playback

DASH Playback

MSS Playback

Where {stream_name} is the name of your configured stream.

3.20.5 CDN Integration

Flussonic CDN

We recommend building CDN infrastructure using Flussonic technologies for optimal integration and performance.

Benefits:

Seamless integration with Mcaster OTT Packager

Optimized performance and reliability

Comprehensive monitoring and analytics

Advanced caching and edge delivery

•

•

•

•

•

•

stream ott_output {
 input udp://239.0.0.1:1234;
 segment_duration 2;
 segments 10;
}

http://streamer/{stream_name}/index.m3u8

http://streamer/{stream_name}/Manifest.mpd

http://streamer/{stream_name}.isml/manifest

•

•

•

•

3.20.3 Configuration

- 88/105 - © Flussonic 2025

Third-Party CDN

Mcaster OTT Packager is compatible with other CDN providers, allowing flexibility in infrastructure choices.

Supported CDN Types:

Traditional CDN providers

Cloud-based CDN services

Hybrid CDN solutions

3.20.6 Archive Playback

Sliding Window Mode

When playing archived content, separation between CDN and Packager may not be possible. In such cases, archive playback servers need to operate

in sliding window mode.

Key Considerations:

Continuous segment generation

Dynamic playlist updates

Efficient storage management

Real-time content availability

DVR Integration

For comprehensive archive playback functionality, refer to the DVR section for detailed information about:

Archive storage configuration

Playback server setup

Sliding window implementation

Performance optimization

3.20.7 Performance Optimization

Segment Optimization

Segment Length: Balance between latency and efficiency

Playlist Length: Optimize for memory usage and startup time

Bitrate Ladders: Configure appropriate quality levels

Caching Strategy

CDN Caching: Leverage CDN edge caching for improved delivery

Local Caching: Implement local caching for frequently accessed content

Cache Headers: Configure appropriate cache control headers

3.20.8 Monitoring and Analytics

Key Metrics

Segment Generation Rate: Monitor segment creation performance

Playlist Update Frequency: Track playlist generation efficiency

CDN Delivery Performance: Measure content delivery metrics

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.20.6 Archive Playback

- 89/105 - © Flussonic 2025

Client Playback Statistics: Analyze viewer behavior and quality

Health Monitoring

Service Availability: Monitor packager service status

Error Rates: Track packaging and delivery errors

Resource Utilization: Monitor CPU, memory, and storage usage

Network Performance: Analyze bandwidth and latency metrics

3.20.9 Security Considerations

Content Protection

DRM Integration: Support for various DRM systems

Token Authentication: Secure access control

Geographic Restrictions: Content geo-blocking capabilities

Encryption: Secure content transmission

Access Control

Authentication Methods: Various authentication mechanisms

Authorization Levels: Role-based access control

Session Management: Secure session handling

Audit Logging: Comprehensive access logging

3.20.10 Troubleshooting

Common Issues

Segment Generation Failures: Check transcoder output and storage permissions

Playlist Errors: Verify configuration and file system access

CDN Delivery Problems: Monitor network connectivity and CDN status

Client Playback Issues: Analyze client compatibility and network conditions

Debug Tools

Log Analysis: Comprehensive logging for issue identification

Performance Monitoring: Real-time performance metrics

Configuration Validation: Automated configuration checking

Health Checks: Automated service health monitoring

3.20.11 Subtitles and Teletext Support

Teletext Processing

Mcaster OTT Packager can recognize DVB subtitles, read teletext and closed captions in MPEG-TS and pass them to HLS and DASH.

Teletext Support:

VBI (SD SDI): Data located in the invisible area of the frame

OP-47 (HD SDI): Teletext specification for HD SDI allowing more stable transmission

Automatic Conversion: Teletext is automatically converted to WebVTT and TTML formats

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.20.9 Security Considerations

- 90/105 - © Flussonic 2025

Supported Cards:

Closed Captions

CEA-608/708 Support:

CEA-608: Standard for analog closed captions (channels 1-4)

CEA-708: Standard for digital closed captions (channels 1-63)

Automatic Extraction: Closed captions are automatically extracted and converted

Configuration Example:

Caption Signaling:

To enable closed captions in manifests, add parameters to the input URL:

Where: * cc.708.12.lang=fr - CEA-708 channel 12 in French * cc.608.1.lang=eng - CEA-608 channel 1 in English

Subtitle Formats

HLS Support:

WebVTT: Primary subtitle format for HLS

Automatic Conversion: Teletext and closed captions automatically converted to WebVTT

DASH Support:

WebVTT: Web Video Text Tracks format

TTML: Timed Text Markup Language (default format)

Format Selection: Choose format via URL parameter ?text=wvtt or ?text=ttml

MSS Support:

TTML: Primary subtitle format for MSS

Automatic Processing: Any subtitle type converted to TTML format

Subtitle Positioning

Configure subtitle position using the substyle parameter:

Card VBI (SD SDI) OP-47 (HD SDI)

DekTec

Decklink

Stream Labs

Magewell

AJA

•

•

•

stream example_stream {
 input tshttp://EXAMPLE-IP/STREAM_NAME/mpegts cc.extract;
 substyle valign=top align=left;
}

stream example_stream {
 input tshttp://EXAMPLE-IP/STREAM_NAME/mpegts cc.708.12.lang=fr cc.608.1.lang=eng;
}

•

•

•

•

•

•

•

stream example_stream {
 input tshttp://EXAMPLE-IP/STREAM_NAME/mpegts cc.extract;

3.20.11 Subtitles and Teletext Support

- 91/105 - © Flussonic 2025

Positioning Options:

Vertical Alignment: valign=top|middle|bottom

Horizontal Alignment: align=left|center|right

TTML Subtitles

TTML (Timed Text Markup Language) is a standard for closed captioning and subtitling that offers:

Rich Features: Positioning, alignment, styling, multiple languages

Industry Standard: Widely supported by media players and streaming platforms

XML-based: Text file with .ttml or .xml extension

Professional Grade: Used in television industry

Features:

Multiple language support

Advanced styling options

Precise timing control

Accessibility compliance

 substyle valign=top align=left;
}

•

•

•

•

•

•

•

•

•

•

3.20.11 Subtitles and Teletext Support

- 92/105 - © Flussonic 2025

3.21 QAM Output

Mcaster allows you to push streams to ATSC-C cable network without need to use additional modulation devices. In this case, a TBS card (currently

we support TBS6014) works as a signal generator for modulation of an MPTS (multiplexer), i.e. converting it to QAM signal that can be transported to

cable networks for TV broadcasting.

3.21.1 Hardware Requirements

To configure QAM output, you need a TBS card (currently TBS6014 is supported) that works as a signal generator for modulation.

3.21.2 DVB Card Configuration

To configure such a pusher, first add to the configuration a DVB card with the following necessary parameters:

hw – the device model, its value should be tbs6014

adapter – adapter number

port – port number

Example:

Optional Parameters

frequency — the carrier frequency (MHz) of the multiplexer for this channel

modulation — TBS modulation method

interleave — use interleaver. The interleaver disperses sequence of bits in bit stream to minimize effect of burst errors during transmission

gain — adjust the output gain to the specified value in dB

input_bitrate — input bitrate, in Mbps

3.21.3 Multiplexer Configuration

Then configure a multiplexer with the option push dvb://tbsmod01 . For example:

•

•

•

dvb_card tbsmod01 {
 hw tbs6014;
 adapter 0;
 frequency 62000000;
 modulation qam256;
 interleave 3;
 gain 5;
 port 0;
 input_bitrate 38;
}

•

•

•

•

•

stream channel1 {
 input udp://239.0.0.1:1234;
}
stream channel2 {
 input udp://239.0.0.2:1234;
}
transponder newMultiplexer1 {
 bitrate 26970k;
 push dvb://tbsmod01;
 program 100 {
 source channel1;
 title Channel1;
 lcn 0;
 service_type digital_tv_avc_sd;
 pid 101 pmt pmt;
 pid 102 v1 bitrate=2000 pcr ;
 pid 103 a1 bitrate=500 ;
 }
 program 200 {
 source channel2;
 title Channel2;
 lcn 1;
 service_type digital_tv_avc_sd;
 pid 201 pmt pmt;

3.21 QAM Output

- 93/105 - © Flussonic 2025

3.21.4 Modulation Methods

When choosing the multiplexer bitrate, keep in mind the used modulation method because it can limit the ability to accept the data:

QAM64 — maximal possible bitrate 26.90735 Mbit/s

QAM256 — maximal possible bitrate 38.81070 Mbit/s

3.21.5 Applications

QAM output is used in various scenarios:

Cable television networks

ATSC-C broadcasting

Local cable headend systems

Professional video distribution

Multi-channel broadcasting

3.21.6 Supported Standards

The module supports:

ATSC-C cable standards

QAM modulation (64-QAM, 256-QAM)

MPTS (Multi-Program Transport Stream) output

Professional cable network integration

 pid 202 v1 bitrate=500 pcr ;
 pid 203 a1 bitrate=100 ;
 }
}

•

•

•

•

•

•

•

•

•

•

•

3.21.4 Modulation Methods

- 94/105 - © Flussonic 2025

3.22 Qprober

3.22.1 Overview

Qprober is an integrated monitoring system within all Mcaster components that measures various event counts across sources and individual data

streams within sources, such as MPEG-TS PIDs. The module provides comprehensive stream quality analysis and real-time problem diagnostics.

3.22.2 System Architecture

Component Integration

Qprober is integrated into all Mcaster components:

Input modules — monitoring sources and streams

Processing modules — analysis of processing quality

Output modules — control of output stream status

System components — monitoring server resources

Centralized Monitoring

Measured counters can be collected centrally across an entire server cluster, but when centralized system is organizationally impossible, Mcaster

Appliance package may include built-in visualization of all counters.

3.22.3 Main Metrics

Basic Server Indicators

CPU load — processor resource usage

Disk load — I/O operations and performance

GPU load — graphics processor usage

Memory usage — RAM and swap consumption

General Video Stream Indicators

Bitrate — current and average stream bitrates

Source status — availability and quality of sources

Frame rate — FPS of input and output streams

Resolution — current resolution of video streams

3.22.4 Error Monitoring

Source Unavailability

Qprober tracks:

Connection loss with sources

Connection timeouts

Authentication errors

Network problems to source

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.22 Qprober

- 95/105 - © Flussonic 2025

Instrumental MPEG-TS Stream Analysis

Analysis according to TR101290 standard includes:

PRIORITY 1 (CRITICAL ERRORS)

Synchronization — stream synchronization loss

PAT — Program Association Table errors

PMT — Program Map Table errors

CC — Continuity Counter errors

PRIORITY 2 (IMPORTANT ERRORS)

PCR — Program Clock Reference errors

PTS/DTS — timestamp errors

CAT — Conditional Access Table errors

PRIORITY 3 (INFORMATIONAL ERRORS)

NIT — Network Information Table errors

SDT — Service Description Table errors

EIT — Event Information Table errors

Network Protocol Analysis

SRT ANALYSIS

Frame loss — number of lost frames

Emergency timestamp jumps — sharp time changes

RTT — Round Trip Time of connection

Retransmissions — number of retransmitted packets

RTSP ANALYSIS

Packet loss — RTP packet loss statistics

Jitter — delay variations

Session errors — RTSP session problems

RTMP ANALYSIS

Frame loss — loss statistics

Protocol errors — RTMP connection problems

Buffering — buffer status

3.22.5 Output Stream Monitoring

Internal Problems

Qprober tracks:

Encoding errors — transcoder problems

Multiplexing problems — multiplexer errors

Buffering errors — buffer overflow

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.22.5 Output Stream Monitoring

- 96/105 - © Flussonic 2025

Response to Input Problems

The module records:

Timestamp correction — automatic time corrections

Counter reset — when drift accumulates

Source switching — automatic switching to backup

Examples of Tracked Events

3.22.6 Problem Diagnostics

Determining Problem Source

Qprober allows determining the source of incoming problems:

NETWORK PROBLEMS

High RTT in SRT connections

Packet loss in RTMP/RTSP

Unstable bitrate

Frequent reconnections

SOURCE PROBLEMS

TR101290 errors in MPEG-TS

Synchronization loss

Incorrect timestamps

Encoding problems

Metrics for Analysis

The main metrics that need to be studied are obtained through the streams_list API. The streams object contains a list of all streams, where each

stream has a stats object with more than a hundred parameters for analysis.

GETTING METRICS

RESPONSE STRUCTURE

•

•

•

{
 "timestamp": "2024-01-15T10:30:00Z",
 "source": "input_stream_1",
 "event": "timestamp_correction",
 "details": {
 "drift_accumulated": 1500,
 "correction_applied": 1500,
 "counters_reset": true
 }
}

•

•

•

•

•

•

•

•

Getting list of all streams with metrics
curl -X GET "http://localhost:8080/api/streams_list"

{
 "streams": [
 {
 "name": "main_stream",
 "stats": {
 // More than 100 parameters for analysis
 "input": {
 "packets_received": 125000,
 "packets_lost": 5,
 "bitrate": 5000000,
 "fps": 25.0,
 "tr101290": {
 "priority1_errors": 0,
 "priority2_errors": 2,
 "priority3_errors": 5

3.22.6 Problem Diagnostics

- 97/105 - © Flussonic 2025

KEY METRIC GROUPS

Input metrics (stats.input): - packets_received/lost — packet statistics - bitrate/fps — stream quality - tr101290 — MPEG-TS errors by standard -

srt/rtmp/rtsp — protocol-specific metrics

Output metrics (stats.output): - packets_sent — sent packets - bitrate/fps — output stream quality - errors — encoding/multiplexing errors

System metrics (stats.system): - cpu_usage — processor load - memory_usage — memory usage - disk_io — input-output operations

3.22.7 Retroview Integration

Online Mode

It is recommended to use Qprober in online mode together with Retroview service:

Real-time — instant problem analysis

Historical data — long-term trend analysis

Automatic alerts — problem notifications

Centralized monitoring — single control point

Offline Mode

Can also be used in offline on-premises mode:

Local storage — data remains in infrastructure

Autonomous operation — independence from external services

Built-in visualization — as part of Mcaster Appliance

3.22.8 Configuration

Basic Settings

Stream Monitoring Configuration

 },
 "srt": {
 "rtt": 25.5,
 "retransmitted_packets": 15,
 "latency": 35.2
 }
 }
 }
 }
]
}

•

•

•

•

•

•

•

qprober {
 enabled true;
 sampling_interval 1000; # milliseconds
 retention_period 86400; # seconds
 log_level info;
}

stream monitored_stream {
 input udp://239.0.0.1:1234;

 qprober {
 tr101290_analysis true;
 network_metrics true;
 output_metrics true;
 alert_threshold 10;
 }
}

3.22.7 Retroview Integration

- 98/105 - © Flussonic 2025

Configuration Parameters

3.22.9 API and Interfaces

HTTP API

Prometheus Metrics

3.22.10 Data Visualization

Built-in Visualization

Mcaster Appliance includes built-in visualization:

Dashboards — real-time key indicators

Graphs — historical data and trends

Alerts — critical event notifications

Reports — detailed analytics

Parameter Description Required Example

enabled Enable Qprober Yes true

sampling_interval Metrics collection interval No 1000

retention_period Data retention period No 86400

tr101290_analysis TR101290 analysis No true

network_metrics Network metrics No true

alert_threshold Alert threshold No 10

Getting stream metrics
GET /api/qprober/stream/stream_name

Getting system metrics
GET /api/qprober/system

Getting TR101290 errors
GET /api/qprober/tr101290/stream_name

Getting network metrics
GET /api/qprober/network/stream_name

System metrics
mcaster_cpu_usage{server="server1"} 45.2
mcaster_memory_usage{server="server1"} 67.8
mcaster_disk_io{server="server1"} 125.5

Stream metrics
mcaster_stream_bitrate{stream="main",server="server1"} 5000000
mcaster_stream_fps{stream="main",server="server1"} 25.0

TR101290 errors
mcaster_tr101290_priority1{stream="main",server="server1"} 0
mcaster_tr101290_priority2{stream="main",server="server1"} 2
mcaster_tr101290_priority3{stream="main",server="server1"} 5

•

•

•

•

3.22.9 API and Interfaces

- 99/105 - © Flussonic 2025

External System Integration

Qprober supports integration with:

Grafana — for advanced visualization

Prometheus — for metrics collection

ELK Stack — for log analysis

Zabbix — for infrastructure monitoring

3.22.11 Usage Recommendations

Performance Optimization

Configure collection interval for metrics according to your needs

Use filtering to reduce load

Plan storage of historical data

Monitor resources of Qprober itself

Alert Configuration

Define critical thresholds for your streams

Configure escalation of notifications

Use different levels of alert importance

Test alerts in test environment

Data Analysis

Regularly analyze quality trends

Correlate problems with external factors

Document typical problems and solutions

Plan improvements based on data

3.22.12 Conclusion

Qprober represents a powerful monitoring and stream quality analysis system integrated into all Mcaster components. The module provides

comprehensive problem diagnostics, from basic system metrics to detailed MPEG-TS stream analysis according to TR101290 standard. The ability

for centralized monitoring of server clusters and built-in visualization make Qprober an indispensable tool for ensuring broadcast quality in

professional systems.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.22.11 Usage Recommendations

- 100/105 - © Flussonic 2025

4. Standards

4.1 TR 101 290

The development of digital television (not as an abstract term, but as a specific set of specifications and products collectively referred to as DVB)

coincided with an era where governmental regulators were able to keep pace with market developments and establish standards that all players had

to follow to operate in the market.

To establish common service provision rules and measurable quality indicators, DVB developed a set of instrumental checks that demonstrate the

correctness of byte stream formation in MPEG-TS. This document is known as ETSI TR 101 290.

In TR101290, it is clearly and unambiguously described how to specifically check the byte stream from the recipient to consider the television stream

suitable for quality analysis. Picture quality analysis is done using other methods, with key terms being PSNR, SSIM, and VMAF. The document has

been adopted by regulators in various countries as mandatory and serves as a good example of how regulatory work can improve the overall market

condition by setting clear rules in the form of an unambiguously interpretable document.

The checks themselves are computationally simple enough to allow constant monitoring of hundreds and thousands of channels without difficulty.

This differs from quality checks; for example, VMAF is rarely run constantly and is typically tested selectively, for just a few minutes per hour.

An analogous document might be the one used to write Apple's mediastreamvalidator for the HLS protocol or an extended XML+MP4 validator for

DASH.

The part of TR101290 that describes the bytes themselves consists of three chapters, sorted by criticality, called priorities. In addition to this part,

there are descriptions of checks in various environments, such as DVB-T/T2, DVB-C/S.

4.1.1 Usage of the standard

The document itself is important only for digital television (DVB) and primarily for non-IP environments, such as cable, terrestrial, and satellite. In

these contexts, it is very meaningful and significant.

However, it is not an integral part of MPEG-TS itself because its requirements are entirely meaningless in the context of HLS, for example. In HLS,

PCR is not used at all, which would be considered heresy for a typical television broadcaster.

4.1.2 1 priority

Section 5.2.1 First priority: necessary for de-codability (basic monitoring) describes the most critical issues that prevent the transport stream from

being unpacked. These issues are:

TS_sync_loss , Sync_byte_error : inability to synchronize with byte 0x47

PAT_error , PAT_error_2 : the absence of PAT on PID 0 or its regular loss (information containing the list of TV channels in the stream)

PMT_error , PMT_error_2 : insufficiently frequent repetition of PMT tables on the PIDs listed in the PAT (description of each TV channel)

PID_error : some PIDs are declared, but no packets are received on them within the desired time (the standard here is flexible, leaving the choice

to the user)

Continuity_count_error : CC errors, which actually indicate loss, duplication, or reordering of packets, with loss being the most common.

In practice, the last point often leads to misunderstandings between individuals with television experience and those with programming experience.

For programmers, the phrase "CC error" primarily sounds like "the code generates an invalid byte stream," whereas it could very well mean "packets

are lost due to microbursts, resulting in insufficient data on the receiver's end."

4.1.3 2 priority

The next section, 5.2.2 Second priority: recommended for continuous or periodic monitoring, describes the correctness of data generation by the

program that created the byte stream. In the DVB world, the concept of remultiplexing is often used, where transport streams are not fully unpacked

to frames and back, but are partially rewritten, keeping some data unchanged. Errors can occur during these repacking processes, which are also

•

•

•

•

•

4. Standards

- 101/105 - © Flussonic 2025

https://www.etsi.org/deliver/etsi_tr/101200_101299/101290/01.04.01_60/tr_101290v010401p.pdf

tracked by this part of the document. Additionally, any of the errors listed below (and above) may arise due to bits changing during transmission,

causing the receiver to see something different from what the source sent.

Transport_error : an upstream program has set the indicator for a broken stream. This can be used to raise an alert only in monitoring without

disrupting playback on televisions.

CRC_error : one of the service tables was modified, but the checksum was not recalculated.

PCR_error : the interval between consecutive stream time stamps is too large.

PCR_repetition_error : time stamps are marked too infrequently and need to be more frequent.

PCR_discontinuity_indicator_error : there was a jump in the stream time, but the discontinuity indicator (or source switching indicator) was not

set.

PCR_accuracy_error : the most mysterious error for those who think PCR is related to real time. It refers to the non-uniformity of stream time

stamping.

PTS_error : PTS is set too infrequently. This error dates back to when it was possible not to timestamp frames with PTS/DTS in MPEG-TS at all. In

HLS, nothing will play without these markers, but PCR can be omitted.

CAT_error : a problem with stream decryption.

4.1.4 PCR

PCR, also known as stream time, is one of the most persistent myths, especially in light of the intimidating requirement of 500-nanosecond accuracy.

It is often mistakenly associated with absolutely precise timing, leading to myths that a computer cannot generate PCR, while a magical hardware

multiplexer made on very expensive Israeli (why not?) FPGA cards can, due to the need for precise timing.

PCR is simply a packet number recalculated using a linear formula: PCR = PCR_initial + (N*188*8) / Bitrate .

That's all the magic; feel free to use it. The trick is that this formula only makes sense when the stream is prepared with CBR (Constant Bit Rate)

requirements, meaning the same number of bytes arrives every second. For HLS, these requirements do not exist, so there is no point in talking about

PCR in HLS.

Our media server, Flussonic, generates the MPEG-TS stream independently, timestamps everything itself, packs it in CBR, and delivers a zero-jitter

PCR.

4.1.5 3 priority

NIT_error , NIT_actual_error , NIT_other_error , SI_repetition_error , TDT_error , RST_error , SDT_other_error : These checks pertain to

the frequency and correctness of informational packets (tables) that describe the transport stream and its contents.

Unreferenced_PID : This indicates that a PID exists but is not listed in any table. This can happen when extraneous PIDs are added and then

extracted on the other side, essentially replacing the instrumental stream structure with voice-over.

Buffer_error , Empty_buffer_error : Errors related to the HRD buffer, which are classified under the third priority, although they probably belong

in the second priority.

EIT_error , EIT_actual_error , EIT_other_error , EIT_PF_error : These errors are related to the schedule, ensuring it arrives on time and is up-

to-date.

4.1.6 HRD Buffer error

Finding details about this simple mechanism isn't easy, so we'll explain it here.

A frame with a specific PTS (indicated in the PES header of the frame) starts being transmitted to the receiver, which accumulates it in a buffer. The

buffer grows with each incoming packet. Once the stream time PCR exceeds the specified PTS, the frame is entirely removed from the buffer,

reducing its fill level. This results in a sawtooth graph pattern.

The buffer should not exceed the upper limit (predetermined) or empty "below zero," meaning the frame must arrive completely by the time the

specified stream time is reached. The transcoder is responsible for compressing the frame sufficiently to meet this requirement.

Buffer depletion is one of the few issues that significantly affect picture quality because the television either has to formally decode a broken frame

or wait for the complete frame to arrive, resulting in a jerky picture.

•

•

•

•

•

•

•

•

•

•

•

•

4.1.4 PCR

- 102/105 - © Flussonic 2025

4.2 Digital TV broadcasting

Digital television developed alongside the Internet, replacing the analog signal. Digital TV supported features that are unusual for a conventional

Internet connection. That's why DVB (Digital Video Broadcasting) systems developed necessary solutions at the time and remain relevant but are

useless for the Internet.

This article describes the features of DVB, including distribution over IP networks (IPTV), regards to how it differs from OTT delivery and UGC

services, such as YouTube or Twitch.

There are several competivive standards of digital television: DVB, ATSC, ISDB-T. They are rather similar to each other, differ in details a bit.

All of them are describing how to use MPEG-TS to transfer TV channel with strict compliance to TR 101 290

DVB application

DVB in IP

Noninteractive DVB

Engineer aspects of DVB

MPEG-TS

PID and CC

PAT, PMT, and other tables

EIT

CBR encoding

PCR

4.2.1 DVB application areas

The following areas require DVB:

satellite TV (DVB-S)

cable TV (DVB-C)

terrestrial TV (DVB-T)

cable TV over IP (IPTV). IPTV often stands apart from DVB, but technical and frame organization relates IPTV to DVB.

The broadcasting in these environments is unidirectional. It means that a source prepares the same set of data for each subscriber and broadcasts

it. The number of subscribers doesn't affect the source. The source doesn't know the number of subscribers it has. Unlike the Internet, where the

number of clients creates a non-linear load on a server.

4.2.2 DVB in IP

IPTV relates to DVB because the concept of IPTV service is the same as in other DVB environments: unidirectional low-interactive distribution of TV

channels over a pre-designed proprietary delivery network. IPTV has the same set of services and user devices, such as set-top boxes and TV sets as

DVB-C.

The difference between IPTV and DVB is the HbbTV (Hybrid Broadcast Broadband Television). It's a technology that provides interactive services to

IPTV.

4.2.3 Interactivity of DVB

Due to unidirectional distribution, DVB lacks interactive services. It means that if consumers of satellite TV services switch off the set-top box for a

long time, the set-top box will miss the session of receiving keys to decode the signal. To activate a new set-top box, the technician of such a service

contacts the office and asks them to send keys to the satellite. Using UGC and OTT services, viewers can activate their desired service in just a

second.

1.

2.

3.

4.

5.

a.

b.

c.

d.

e.

•

•

•

•

4.2 Digital TV broadcasting

- 103/105 - © Flussonic 2025

Without interactive services, you risk losing revenue as subscribers can't immediately access a sports package of TV channels to watch events like

the World Cup final with friends. To avoid losing revenue and provide interactive services, traditional DVB services transitioned to IP networks and

implemented middleware. Middleware is a website with an embedded player.

4.2.4 Engineer aspects of DVB

Unidirectional DVB delivery systems such as satellite, cable, and terrestrial have the following technical features:

Constant bitrate.

For example, a satellite transmitter on the right frequency transmits precisely 48 MB of data per second. If the transmitter software stops

responding for a couple of seconds, subscribers will lose the signal. For engineers, this means creating soft real-time systems with strict bitrate

stability requirements.

Push model of services.

In DVB services, to deliver a set of content or TV schedules, data has to be prepared in a certain way. The data is often sent to consumers, even if

they don't need this data. Since the data channel dedicated to services is limited, it's challenging to add new services.

Regulated protocols and services.

Committees and government regulators control DVB at the protocol level. It means that any TV works with DVB services, but the list of all possible

services is limited and hasn't changed for years. DVB has a set of content as a list of TV channels and a schedule of TV programs on those TV

channels in a limited form. The later implementation of HbbTV allowed to provide interactive services and diversity to outdated specifications.

4.2.5 MPEG-TS

DVB uses the MPEG-TS packaging format to deliver television. MPEG-TS isn't a protocol because there is no description of client-server interaction in

the standard. Often such interaction doesn't exist.

MPEG-TS is suitable for DVB tasks because it's designed for beyond IP networks. It's when there are no boundaries on the number of packets,

addresses, or ports, and a stream of bytes, in which you need to somehow find the boundaries of packets and quickly start showing video.

In practice, MPEG-TS shows that the picture appears on the screen within a couple of seconds.

In the context of DVB, you need to know the following about MPEG-TS:

What's PID and CC

PAT, PMT, NIT tables to arrange the list of TV channels

EIT tables for transmitting EPG

CBR encoding content

PCR, which attracts more than enough attention

PID и CC

MPEG-TS was designed to pack several parallel data streams into a single physical channel.

In IP networks, parallel data streams are separated by IP addresses and ports at both ends of the connection. In MPEG-TS, this separation is made by

specifying a 13-bit channel number within the shared stream at the beginning of each packet. All packets have the same size: 188 bytes with four-

byte headers. In these four bytes, the first byte is reserved for a fixed number 0x47 used to find packet boundaries in the byte stream (three 0x47

bytes running through 187 bytes are sufficient for synchronization). The remaining 3 bytes are reserved for PID (Programme Identifier), CC (Continuity

Counter), and other flags.

CC (Continuity Counter) is a 4-bit counter indicating that packets aren't missed. Unlike RTP, DVB doesn't involve packet rearrangement, so you can tell

if a pair of packets got lost by using CC. It's more complex to distinguish the loss of one packet and 17 packets.

Under normal conditions, there are no CC errors in the output from the Flussonic Media Server because the server doesn't lose anything anywhere. CC

errors can arise due to a restart of the stream or packet loss further downstream.

•

•

•

•

•

•

•

•

4.2.4 Engineer aspects of DVB

- 104/105 - © Flussonic 2025

PAT, PMT, and other tables

PAT, PMT, and other tables establish the transmission format of the list of TV channels available on the current and neighboring frequencies. DVB

standard is under government committees control. It means that all set-top boxes and TV sets can read it. For decades, DVB hasn't experienced any

development or change.

The standards of the committees don't keep up with the market needs. The situation with LCN (Logical Channel Number) proves the point.

To establish the order of TV channels for consumers, providers use different solutions and none of them has become a standard. It means that for

different TV sets, the order is different.

The allocated PIDs transfer records of TV channels in bits. Such design isn't scalable, but vendors and operators come up with their solutions to

overcome this complication. Their solutions work and even support adding new codecs.

Flussonic generates all the tables from scratch rather than passes them through from input to output. This way, you get the correct output stream.

EIT

EIT (Event Information Table) transmits the EPG (Electronic Programme Guide) TV schedule in a separate PID.

The metadata channel is constrained, as evidenced by the design of this feature. The TV schedule for the current day is sent much more often than

for future days. There's no rush to receive the schedule if the program is scheduled many hours away, but the set-top box still needs to quickly access

the current schedule.

The algorithm for preparing EPG schedules can be complex, often requiring dedicated programs. Flussonic has a built-in EIT generator that uses

XMLTV to prepare the EPG. For details on how to add the EPG in Flussonic, see Adding the EPG to MPTS in Mcaster.

CBR encoding

Only audio can achieve true constant bitrate (CBR) as each frame of MPEG-2 audio is encoded using the same number of bytes. CBR video is

possible when transferring between 300 and 3000 Mb per stream with raw codec or separate frame compression. While the H.264 codec typically

operates in variable bitrate (VBR), you can try to achieve CBR by compressing each frame to the required size.

When analyzing one-hour files of a variable bitrate (VBR) stream, you'll notice that they have consistent sizes. It makes them constant bit rate (CBR)

streams but with a larger window. In DVB, this window equals one second. It means that the total number of bytes for every consecutive number of

frames (typically 25 FPS) remains within the specified limit.

No encoder achieves the specified bitrate. When examining a stream in a DVB analyzer, you'll see graphs displaying even bitrates, thanks to bit

stuffing. MPEG-TS maintains the required traffic by inserting Null packets into the stream. Transmitted over a dedicated port, Null packets don't

provide any valid information. H.264 uses NAL units (Network Abstraction Layer Units) for stuffing, which are not displayed by analyzers.

DVB encoders are expected to approach the specified minimum bitrate without exceeding it. However, ensuring such precise guarantees for encoders

is often excessive, and few transcoders are designed with such strict requirements in mind.

PCR

PCR (Programme Clock Reference)—time stamps showing the timing embedded into the stream. A media player should use it as a reference.

Suppose the player received a frame that has a PTS (Presentation TimeStamp). The player will show the frame when the required PCR arrives in the

stream.

PCR doesn't require real-time systems and can be set on an ordinary server, achieving 100% PCR accuracy and zero jitter in the output. PCR accuracy

tells you how much the linearity of packet number growth and PCR growth don't match. To create a stream that maintains consistent bitrates for

separate PIDs even when certain PIDs are skipped, you need a software that meets several requirements from the DVB standard.

Flussonic drops all incoming PCR marks and often ignores them because they aren't required. Then Flussonic inserts the PCR marks in the output

stream with zero jitter value.

4.2.5 MPEG-TS

- 105/105 - © Flussonic 2025

	Mcaster Manual
	1. Products
	1.1 Mcaster - Professional TV Signal Processing System
	1.1.1 Overview
	1.1.2 Modular Architecture
	Main Modules
	Signal Capture and Reception
	Processing and Management
	Transcoding and Adaptation

	Modular Architecture Advantages

	1.1.3 Built-in Monitoring
	Monitoring Capabilities
	Flow Analysis
	Specialized Metrics
	Diagnostics and Alerts

	Built-in Monitoring Advantages

	1.1.4 Deployment Options
	1. Standalone Linux Program
	2. Server Firmware
	3. Hardware-Software Complex

	1.1.5 Application Areas
	Television Broadcasting
	OTT and Internet Broadcasting
	Professional Applications

	1.1.6 Mcaster Advantages
	Reliability
	Quality
	Efficiency

	1.1.7 Conclusion

	2. Manual
	2.1 Installing mcaster appliance
	2.1.1 Installation Process Overview
	2.1.2 Obtaining the Installer Image
	Requesting the Image
	USB Drive Requirements

	2.1.3 Installation Preparation
	Recording the Image to USB
	Configuring Installation Parameters

	2.1.4 autoinstall.txt Configuration File
	File Structure
	Configuration Parameters
	Recommended Settings

	2.1.5 Installation Process
	Booting from USB
	Automatic Installation
	Timeframes

	2.1.6 Security and Recommendations
	⚠️ Important Warning
	Recommended Secure Method
	Installation Preparation

	2.1.7 Post-Installation Setup
	First Boot
	System Access
	Installation Verification

	2.1.8 Troubleshooting
	Common Issues
	Installation Logs

	2.1.9 Conclusion

	2.2 Appliance Operating System
	2.2.1 Architecture Overview
	2.2.2 Minimal Package Set
	Minimalism Principle
	Build Process

	2.2.3 File System Images
	Readonly Architecture
	Linux Kernel Modification

	2.2.4 Additional Software Installation
	Installation Mechanism
	Approach Advantages

	2.2.5 Update System
	Safe Updates
	Rollback Mechanism
	Update System Advantages

	2.2.6 Security
	Multi-level Protection
	Monitoring and Auditing

	2.2.7 Conclusion

	3. Modules
	3.1 MPEGTS Reader
	3.1.1 Overview
	3.1.2 Operating Principles
	Complete Stream Processing
	Automatic Metadata Extraction
	Demultiplexing

	3.1.3 Configuration
	Basic SPTS Stream
	MPTS Stream with Demultiplexing
	Advanced Configuration
	Configuration Parameters

	3.1.4 Automatic Metadata Extraction
	SDT (Service Description Table)
	EPG (Electronic Program Guide)

	3.1.5 Filtering and Optimization
	PID Filtering
	Filtering Benefits

	3.1.6 Automation
	Minimal Configuration
	Smart Processing

	3.1.7 API and Interfaces
	3.1.8 Monitoring and Diagnostics
	Key Metrics
	Diagnostic Parameters
	Basic Stream Parameters
	Detailed PID Parameters (stats.input.pids[0])

	3.1.9 Usage Examples
	Simple SPTS Reception
	MPTS with Program Selection
	Audio Filtering
	Transcoder Integration

	3.1.10 Troubleshooting
	Common Problems
	Stream Not Receiving
	Missing Metadata
	Demultiplexing Problems

	Diagnostic Commands

	3.1.11 Configuration Recommendations
	Performance Optimization
	Reception Quality
	Working with Metadata

	3.1.12 Conclusion

	3.2 T2MI Reader
	3.2.1 Automatic Enable
	3.2.2 Purpose
	3.2.3 Technical Details
	Processing
	Supported Formats

	3.2.4 Applications

	3.3 ASI Reader
	3.3.1 Overview
	3.3.2 Supported Capture Cards
	Dektec
	Streamlabs
	Softlab

	3.3.3 Architecture
	Operating Principle
	Connection Diagram
	Importance of Multicast Architecture

	3.3.4 Module Configuration
	Basic Configuration
	Configuration Parameters
	Extended Configuration

	3.3.5 Card Serial Number Determination
	Using DtInfoCL
	DtInfoCL Output Example

	3.3.6 Integration with mpegts reader
	Processing Chain Configuration

	3.3.7 Troubleshooting
	Common Problems
	Card Not Detected
	No Signal in Multicast
	Buffer Errors

	Diagnostic Commands

	3.3.8 System Requirements
	Hardware Requirements
	Software Requirements
	Network Requirements

	3.3.9 Conclusion

	3.4 SDI Coder
	3.4.1 Overview
	3.4.2 Supported Capture Cards
	Dektec
	Blackmagic Design
	V4L Compatible Cards

	3.4.3 Supported Formats
	SDI-SD (Standard Definition)
	SDI-HD (High Definition)
	SDI-UHD (Ultra High Definition)

	3.4.4 Input Signals
	Video
	Multichannel Audio
	Teletext and Subtitles
	CEA-608/708 Closed Captions
	VBI Teletext (Important for Legacy Broadcasting Systems)
	VBI Teletext Configuration
	Teletext Parameters

	3.4.5 Timestamp Correction Subsystem
	Automatic Alignment
	Lost Frame Correction
	Correction Settings

	3.4.6 Module Configuration
	Basic Settings
	Capture Parameters
	Output Settings

	3.4.7 Integration with mcaster
	As Stream Source
	Stream Configuration Example

	3.4.8 Monitoring and Diagnostics
	Capture Statistics
	Logging
	Prometheus Metrics

	3.4.9 Troubleshooting
	Common Issues
	No Signal
	Synchronization Issues
	Audio Issues

	Diagnostic Commands

	3.4.10 System Requirements
	Hardware Requirements
	Software Requirements

	3.4.11 Conclusion

	3.5 HDMI Encoder
	3.5.1 Recommended Hardware
	3.5.2 Drivers
	3.5.3 HDMI Capture Setup
	Basic Stream Configuration
	Manual Mode Configuration
	Web Interface Configuration

	3.5.4 HDMI Stream Transcoding
	Benefits of the New Approach

	3.5.5 Deinterlacing
	3.5.6 SD Video Capture
	3.5.7 Duplex Mode Operation
	3.5.8 Limitations and Recommendations
	Time Limitations
	Recommendations for Critical Systems
	Testing New Cards

	3.6 SRT Reader
	3.6.1 Overview
	3.6.2 Operating Principles
	Receiving Publications
	SRT Protocol

	3.6.3 Configuration
	Basic Setup for Receiving Publications
	Configuration Parameters
	Advanced Configuration
	Stream Capture Configuration

	3.6.4 SRT Options
	passphrase
	latency

	3.6.5 Publication Testing
	Sending Stream via FFmpeg
	Sending Stream from Another Server

	3.6.6 Monitoring
	SRT-Specific Parameters
	Round Trip Time (RTT)
	Real Latency
	Retransmitted Packets

	General MPEGTS Reader Metrics

	3.6.7 Usage Examples
	Simple Publication
	Secure Publication
	Multiple Streams
	Transcoder Integration

	3.6.8 Troubleshooting
	Connection Issues
	Cannot Connect to Port
	High RTT
	Frequent Packet Retransmissions

	Diagnostic Commands

	3.6.9 Configuration Recommendations
	Optimal Latency Values
	Security
	Performance
	Critical Parameter Monitoring

	3.6.10 Conclusion

	3.7 DVB Reader
	3.7.1 Overview
	3.7.2 Supported Standards
	DVB-S/S2 (Satellite Broadcasting)
	DVB-T/T2 (Terrestrial Broadcasting)
	DVB-C (Cable Broadcasting)

	3.7.3 DVB Card Configuration
	Basic Configuration Structure
	Configuration Parameters
	DVB-S2 Configuration Example
	DVB-T2 Configuration Example
	DVB-C Configuration Example

	3.7.4 Stream Configuration
	Basic Stream
	Stream Parameters
	Advanced Stream Configuration
	Multiple Streams

	3.7.5 Supported Capture Cards
	DVB-S/S2 Cards
	DVB-T/T2 Cards
	DVB-C Cards

	3.7.6 Troubleshooting
	Signal Issues
	No Signal
	Weak Signal
	Poor Quality

	Capture Card Issues
	Card Not Detected
	Driver Errors

	Diagnostic Commands

	3.7.7 Configuration Recommendations
	Reception Optimization
	DVB-S/S2
	DVB-T/T2
	DVB-C

	Security and Stability
	Performance

	3.7.8 Conclusion

	3.8 DVB-WebVTT
	3.8.1 Overview
	3.8.2 Operating Principles
	DVB Subtitle Processing
	Supported Formats

	3.8.3 Configuration
	Basic Setup
	Configuration Parameters
	Dvbocr Operation Modes
	replace
	add

	Extended Configuration

	3.8.4 OCR Technology
	Recognition Algorithms
	Quality Optimization

	3.8.5 Output Formats
	WebVTT Subtitles
	HLS Manifest
	DASH Manifest

	3.8.6 Automatic Language Separation
	Language Detection

	3.8.7 Troubleshooting
	Recognition Problems
	Low Recognition Quality
	No Subtitles in Output

	Performance

	3.8.8 Device Compatibility
	Supported Devices
	Subtitle Formats

	3.8.9 Conclusion

	3.9 DVR
	3.9.1 Overview
	Key Features

	3.9.2 Basic Configuration
	Simple DVR Setup
	Advanced DVR Configuration

	3.9.3 Playback Methods
	EPG-Based Archive Playback
	Event Playlists for Live Content

	3.9.4 Timeshift Capabilities
	Relative Timeshift
	Absolute Timeshift
	Handling Archive Gaps

	3.9.5 Middleware Integration
	EPG-VOD Method
	Event Playlist Method

	3.9.6 Scalability Considerations
	Timeshift_abs Limitations
	Scaling Solutions

	3.9.7 Storage Management
	Retention Policies
	Storage Optimization

	3.9.8 Performance Monitoring
	Key Metrics
	Health Checks

	3.9.9 Troubleshooting
	Common Issues
	Debug Tools

	3.10 RTMP Reader
	3.10.1 Global Port Setup
	3.10.2 Stream Configuration
	3.10.3 Access Control
	3.10.4 RTMP Server
	3.10.5 Supported Broadcast Software
	3.10.6 Security
	3.10.7 Monitoring

	3.11 LiveStreamInput (LSI)
	3.11.1 Overview
	3.11.2 Operating Principles
	Automatic Switching
	Backup Source Verification
	Source Compatibility

	3.11.3 Configuration
	Basic Setup
	Configuration Parameters
	Advanced Configuration

	3.11.4 Monitoring via HTTP API
	Main API Methods
	Key Stats Parameters
	Reconnections and Switches
	Backup Source Status

	3.11.5 Monitoring Parameters Interpretation
	Reconnections (stats.input.retries)
	Switches (stats.input.input_switches)
	Time Working on Sources
	Backup Source Status
	Working Backups (stats.input.valid_secondary_inputs)
	Failed Backups (stats.input.invalid_secondary_inputs)
	Incompatible Sources (stats.input.divergent_inputs)

	3.11.6 Monitoring Examples
	Checking Stream Status
	Monitoring Script

	3.11.7 Troubleshooting
	Frequent Reconnections
	Missing Backup Sources
	Source Incompatibility

	3.11.8 Configuration Recommendations
	Optimal source_timeout Values
	Number of Backup Sources
	Monitoring and Alerts

	3.11.9 Conclusion

	3.12 Transcoder
	3.12.1 Transcoder
	Overview
	Module Application
	Main Usage Scenarios
	Connecting SDI and Compressed Video
	Bitrate Reduction
	DVB and OTT Integration
	Transmitting Unknown Quality Stream to DVB

	Operating Modes
	DVB CBR (Constant Bit Rate)
	Purpose
	Configuration
	Key DVB Parameters

	OTT MBR (Multi-Bitrate)
	Purpose
	Configuration
	Key OTT Parameters

	Detailed Configuration Parameters
	Video Parameters
	Basic Settings
	Quality Parameters
	GOP Parameters

	Audio Parameters
	DVB-Specific Parameters

	Limitations and Features
	Mode Incompatibility
	Transcoder Adaptability

	Configuration Examples
	HD DVB Broadcasting
	OTT Multibitrate
	SD DVB Broadcasting
	LSI Integration

	Troubleshooting
	Quality Issues
	Low Output Stream Quality
	Unstable Bitrate

	Performance Issues
	High CPU Load
	Encoding Delays

	Configuration Recommendations
	DVB Optimization
	OTT Optimization
	General Recommendations

	Conclusion

	3.12.2 DVB-compliant CBR
	In the web interface
	Step 1. Configure the stream transcoding to CBR
	Step 2. Send the stream to a multicast group

	In the configuration file
	Step 1. Configure the stream transcoding to CBR
	Step 2. Send the stream to a multicast group

	Step 3. Checking the stream quality in the DVB Inspector

	3.13 SCTE Processor
	3.13.1 Overview
	3.13.2 Supported Formats
	SCTE35
	SCTE104

	3.13.3 Operating Principles
	Automatic Conversion
	Time Distortion Compensation
	Distortions in Television Paths
	Transcoding Distortions
	Changes in LSI Module

	3.13.4 Processing Architecture
	Workflow Diagram
	Processing Stages

	3.13.5 Automatic Operation
	Out-of-the-Box Operation
	Integration with Other Modules

	3.13.6 Technical Features
	Time Compensation Algorithms
	Adaptive Compensation
	Marker Validation

	Performance

	3.13.7 Monitoring and Diagnostics
	Operation Metrics

	3.13.8 Recommendations
	Operation Optimization
	Parameter Monitoring

	3.13.9 Conclusion

	3.14 SDI Decoder
	3.14.1 Simple Configuration
	3.14.2 Embedded Audio in Television
	3.14.3 Supported Input Sources
	3.14.4 Audio Configuration
	3.14.5 Hardware Identification
	3.14.6 Decklink SDI Output
	Basic Decklink Output Configuration
	Decklink Card Modes
	Duplex Mode Operation

	3.14.7 VBI Teletext Output (Important for Legacy SD Systems)
	Prerequisites
	VBI Teletext Configuration
	Important Notes

	3.15 ASI Push
	3.15.1 Purpose
	3.15.2 Configuration
	3.15.3 Hardware Requirements
	3.15.4 Supported Formats
	3.15.5 Configuration Parameters
	DekTec Card Identification
	Stream Configuration

	3.15.6 Applications
	3.15.7 Monitoring

	3.16 Multiplexer
	3.16.1 Main Tasks
	3.16.2 Configuration Example
	3.16.3 Configuration Details
	Program Sections
	Program Parameters
	PID Configuration
	PID Options
	Bypass PID Parameters

	Additional Parameters

	3.16.4 Monitoring Parameters
	Main Metrics
	Additional Metrics

	3.16.5 Service Tables
	3.16.6 DVB Standard Requirements
	3.16.7 Electronic Program Guide (EPG)
	Two Ways to Add EPG
	Copy EPG from Source
	Import EPG from XMLTV
	Configuration Parameters
	EPG Reloading
	Important Notes

	3.17 TwinCast Recovery
	3.17.1 Overview
	Key Features

	3.17.2 How Standby Mode Works
	Primary Server Operation
	Backup Server Operation
	Failover Process

	3.17.3 Configuration
	Basic Setup
	Advanced Configuration
	Multicast Group Settings
	Network Considerations

	3.17.4 Monitoring and Status
	Standby Status Monitoring
	Status Values
	Monitoring Best Practices

	3.17.5 Use Cases
	Content Provider Redundancy
	Enterprise Applications

	3.17.6 Troubleshooting
	Common Issues
	Backup Server Not Activating
	Primary Server Not Detected
	Frequent Failovers

	Diagnostic Commands

	3.17.7 Performance Optimization
	Switching Speed Optimization
	Resource Management

	3.17.8 Security Considerations
	Network Security
	Configuration Security

	3.18 RTMP Pusher
	3.18.1 Use Cases
	3.18.2 Publish to YouTube
	3.18.3 Publish to Facebook
	3.18.4 Publish to OK
	3.18.5 Configuration Example
	3.18.6 Multiple Destinations
	3.18.7 Monitoring

	3.19 SRT Egress
	3.19.1 Overview
	3.19.2 Basic Configuration
	3.19.3 URL Formats
	SRT Parameters in URL Parameters
	SRT Parameters in URL Query String

	3.19.4 Configuration Examples
	Simple SRT Push
	SRT Push with Parameters
	Multiple SRT Destinations

	3.19.5 SRT Parameters
	Security Parameters
	Performance Parameters
	Example with Parameters

	3.19.6 Stream ID Format
	3.19.7 Use Cases
	CDN Distribution
	Satellite Transmission
	Remote Studio

	3.19.8 Error Handling
	3.19.9 SRT Playback
	Basic SRT Playback Configuration
	Combined Publish and Play
	Global SRT Playback Port
	SRT Playback with Parameters
	URL Format Summary

	3.20 OTT Packager
	3.20.1 Overview
	Key Features

	3.20.2 Supported Protocols
	HLS (HTTP Live Streaming)
	DASH (Dynamic Adaptive Streaming over HTTP)
	MSS (Microsoft Smooth Streaming)

	3.20.3 Configuration
	Basic Configuration

	3.20.4 Playback URLs
	HLS Playback
	DASH Playback
	MSS Playback

	3.20.5 CDN Integration
	Flussonic CDN
	Third-Party CDN

	3.20.6 Archive Playback
	Sliding Window Mode
	DVR Integration

	3.20.7 Performance Optimization
	Segment Optimization
	Caching Strategy

	3.20.8 Monitoring and Analytics
	Key Metrics
	Health Monitoring

	3.20.9 Security Considerations
	Content Protection
	Access Control

	3.20.10 Troubleshooting
	Common Issues
	Debug Tools

	3.20.11 Subtitles and Teletext Support
	Teletext Processing
	Closed Captions
	Subtitle Formats
	Subtitle Positioning
	TTML Subtitles

	3.21 QAM Output
	3.21.1 Hardware Requirements
	3.21.2 DVB Card Configuration
	Optional Parameters

	3.21.3 Multiplexer Configuration
	3.21.4 Modulation Methods
	3.21.5 Applications
	3.21.6 Supported Standards

	3.22 Qprober
	3.22.1 Overview
	3.22.2 System Architecture
	Component Integration
	Centralized Monitoring

	3.22.3 Main Metrics
	Basic Server Indicators
	General Video Stream Indicators

	3.22.4 Error Monitoring
	Source Unavailability
	Instrumental MPEG-TS Stream Analysis
	Priority 1 (Critical Errors)
	Priority 2 (Important Errors)
	Priority 3 (Informational Errors)

	Network Protocol Analysis
	SRT Analysis
	RTSP Analysis
	RTMP Analysis

	3.22.5 Output Stream Monitoring
	Internal Problems
	Response to Input Problems
	Examples of Tracked Events

	3.22.6 Problem Diagnostics
	Determining Problem Source
	Network Problems
	Source Problems

	Metrics for Analysis
	Getting Metrics
	Response Structure
	Key Metric Groups

	3.22.7 Retroview Integration
	Online Mode
	Offline Mode

	3.22.8 Configuration
	Basic Settings
	Stream Monitoring Configuration
	Configuration Parameters

	3.22.9 API and Interfaces
	HTTP API
	Prometheus Metrics

	3.22.10 Data Visualization
	Built-in Visualization
	External System Integration

	3.22.11 Usage Recommendations
	Performance Optimization
	Alert Configuration
	Data Analysis

	3.22.12 Conclusion

	4. Standards
	4.1 TR 101 290
	4.1.1 Usage of the standard
	4.1.2 1 priority
	4.1.3 2 priority
	4.1.4 PCR
	4.1.5 3 priority
	4.1.6 HRD Buffer error

	4.2 Digital TV broadcasting
	4.2.1 DVB application areas
	4.2.2 DVB in IP
	4.2.3 Interactivity of DVB
	4.2.4 Engineer aspects of DVB
	4.2.5 MPEG-TS
	PID и CC
	PAT, PMT, and other tables
	EIT
	CBR encoding
	PCR

