Flussonic manual

11 December 2018

Quickstart

LiveEstreaming

Publishing video to the server
Multicast receiving

Data source types

Sources switching
Server-Side Playlists

Overlay logo

Mixer

WebRTC Publishing

Decklink SDI

Push to other servers

DVB subtitles OCR recognition to WebVTT
Video playback

HLS playback

Video insertion on websites (embed.html)
HTML5 (MSE-LD) low latency playback
MSE Player

Sending a multicast

Constant bitrate UDP
WebRTC Playback

Playing H.265

Transcoder

Hardware transcoding
Thumbnails

Mosaic

VODEfile broadcasting
Cache

VOD from cloud

Transcode files

Cluster

Cluster restreaming



Cluster ingest

Load balancer

Peering

CDN Organization

Digital Video Recording (DVR)

Archive (DVR) Configuration

Timeshift to another time zone

Recording broadcasts (Catchup TV)

DVR playback

Save to MP4

DVR access via existing protocols
Keyframe only export

DVR API

Cluster DVR

DVR replication

DVR in a cloud

Authorization

Authorization configurator

Statistics service

Domain lock

Authorization in Flussonic via Middleware
Securing access to streams (Authorization with token)
Limiting the number of sessions per user (antitheft protection)
How to configure two auth backend

How to deny access via IP address
Archive access authorization

Media name aliasing

HTTP API to Flussonic Media Server
Events API

SQL API

Cluster management via SQL API

SNMP

DRM content protection in Flussonic Media Server
A trivial key server

Conax DRM

BuyDRM's KeyOS platform

Web interface

page 1 from 235



Installation

Updating Flussonic

Configuring Flussonic Media Server
Monitoring

Fine-tuning Flussonic Media Server and OS
Using the license key

Lua Scripts

Securing Flussonic

Let's Encrypt and Flussonic Media Server
Flussonic Media Server Migration
Capturing satellite video

Transcoding

Middleware in IPTV OTT

Export of EPG from MPEG-TS Streams
Stream groups

How-to Guides

page 2 from 235



Quickstart

It is easy to start and try Flussonic. You need a computer with linux at hand and license or trial key.
Trial key can be requested from us.

In this article we will explain how to install Flussonic, upload a video file and see a stream from
Flussonic.

We recommend Debian or Ubuntu, but it is possible and something like Centos, the main thing that
would be 64 bits. If you don't have Linux or free server, does not matter, rent for a few days a small
server at Digital Ocean.

As a result, you have to get access to a Linux console as root.

Next we will give addresses and URLSs of your server. Please change IP in them on the real address of
your server.

Installation

Installing Flussonic detailed in separate article so just copy what you need to run in the console, which
would it work:

curlE-sSfEhttps://flussonic.com/raw/install.shE|Esh

Now we have to run Flussonic:

Jetc/init.d/flussonicEstart

Open in browser Flussonic admin web interface on the page http://flussonic-ip:8080/ and paste there
license key that you have received (change "flussonic-ip" to the real address of the server). On this
page you can change administrator login and password.

License key stored in /etc/flussonic/license.txt file, you can put the key there before start.

You can check whether your Flussonic installation is correct by visiting http://flussonic-ip:8080/ where
flussonic-ip is the address of the hosting server to which you installed the software. You can also run
the following command:

Jetc/init.d/flussonicEstatus

Should be like this:

#E/etc/init.d/flussonicEstatus
FlussonicE4.6.10EisErunningEwithEstreams:

Flussonic admin web interface http://flussonic-ip:8080/
Default login and password are: flussonic and letmein!

More info in installation manual

File playback
Now let's try to play a file via Flussonic.

page 3 from 235



To do this:

configure the ability to play files;

upload a file;

play it.
Flussonic doesn't dictate rigidly where on the disk to place your files. Moreover, files can be in
different places on your disk, so you need to explicitly specify where to get the them. For this you

need to configure Flussonic and specify how path in requests for various protocols will match file on
disk or in an HTTP repository.

If to specify this in configuration file:
fileEvodE{

EEpathE/storage;

}

than Flussonic will know that on accessing vod/movies/bunny.mp4 it will need to take file
/storage/movies/bunny.mp4, i.e. everything after the matched prefix vod will be cut and glued to the
path on disk.

Similarly you can configure access to files through web interface.

Now you can upload the file you have prepared or downloaded prepared in the directory /storage. If
you do not have a video, you can take freely available Big Bucks Bunny:

mkdirE-pE/storage
cdE/storage
curlE-oEbunny.mp4Ehttp://download.blender.org/peach/bigbuckbunny_movies/big_buck_bunny_480p_h264.mov

Now open this link: http://IP:8080/vod/bunny.mp4/embed.html and see the cartoon.

More info in VOD manual

Live streaming

Slightly simplifying, Flussonic can receive streaming video in two main ways: acting as a client or
server.

In the first case Flussonic itself connecting to video source. In the second B waiting for connection to
receive video for publication.

Video source can be a ip camera, other videostreaming server, a specialized program working with
DVB card, and generally any program that can stream video over the network. Flussonic supports all
major video transfer protocols.

Also Flussonic may itself generate a video stream that can be used to test the operation.
Open the configuration file /etc/flussonic/flussonic.conf and add there description of the stream:

streamEdemoE{
EEurlEfake://fake;

}

Here stream B keyword, followed by the name of the stream: demo. Next in braces description of the
stream parameters. Video source is given by the parameter url. fake://fake - a special address where
you can get sample stream video. Currently it's just a clock on a gray background.

After you changed the configuration file, you need to apply the settings. Run the command:

page 4 from 235



Jetc/init.d/flussonicEreload

Now open in browser http://IP:8080/demo/embed.html and see the result.

More info in Live streaming manual

Publishing video

Publication is a situation in which another program connects to Flussonic to transmit a streaming a
video. To make this possible, in Flussonic must be configured a place in which publication is allowed.
This can be done in two ways. The keyword live specifies the prefix, allowing the publication in any
stream with this prefix:

liveEmyliveE{

}

The prefix of 'mylive’ is included in a config file by default after installation. Check its existence in
'fetc/flussonic/flussonic.conf'. If this directive is missing in your file, add it and reload configuration to
apply the settings.

We will publish video by means of the ffmpeg. It is very useful command line utility for work with
video. It is installed with flussonic-ffmpeg package and located in /opt/flussonic/bin directory. For
transfer we will use the RTMP protocol, the file from the previous example will be a source of video:

lopt/flussonic/bin/ffmpegE-reE-iEbunny.mp4E-cEcopyE-fEflvErtmp://IP:1935/mylive/bunny
Here the -c copy parameter forces ffmpeg to copy video and a audio tracs without transcoding, and

the -f flv parameter sets the necessary type of the container for use with the RTMP protocol. The -re
parameter says that it is necessary to read from file with a speed equal to its bitrate.

To see the result open in browser address: http://IP:8080/mylive/bunny/embed.html page.

Mention that when you add publish prefix mylive, you need to use stream name, starting from
mylive/, for example mylive/bunny. You choose what to put after prefix and exact stream name is not
reflected in Flussonic config.

In order to allow the publication in any single stream, use the option publish_enabled:

streamEpubdemoE{
EEpublish_enabled:;
}

In this case you need to publish to rtmp://IP:1935/static/pubdemo and play on
http://1P:8080/pubdemo/embed.html

Refer to this article to learn about publishing video in more detail.

page 5 from 235



LiveEstreaming

Flussonic Media Server can retransmit streaming video with multiplexing. That is, a single copy of
data is taken from the source and delivered to all users who requested this video.

Flussonic Media Server works with three types of streams:

static N permanently kept broadcasting.
ondemand N requested by users (on demand).

live N user-published streams. See Publishing for details.

Content:

Static streams

On-demand streams

Stream playback

Multibitrate stream

Stream screenshots

Substituting stream with a file

Wildcards

Recording video stream (DVR)

Time zone adjustment (Timeshift)

Stream delivery over UDP multicast
Stream settings for IP surveillance cameras
Turning on audio-only HLS

Capturing stream from another Flussonic Media Server
DRMin live

Stream or group settings

Static streams

Static streams are launched upon server start, and Flussonic monitors them continuously.

If for some reason (transcoder went off, antenna broke down) the data source disconnects, Flussonic
Media Server will keep trying " reconnect until success or shutdown.

Usually, an IPTV channel or IP camera are declared as a static stream.
Flussonic Media Server supports many types of data sources, which must be pointed at with URLSs.
Example of a configuration of /etc/flussonic/flussonic.conf file:

streamEortE{
EEurlEtshttp://10.0.4.5:9000/stream;

}

streamEipcamE{
EEurlErtsp://192.168.0.100/channel/101;

}

page 6 from 235



In this config:

ortEand ipcam are names of stream that must be used when requesting Flussonic Media Server.
tshttp://10.0.4.5:9000/stream and rtsp://192.168.0.100/channel/101Eare the data source's URL.

Important. The name of a stream may contain only Latin characters, digits, periods (.), minus (-), and
underscore (_) characters. If the name contains anything else, correct work of the DVR and
broadcasting in general cannot be guaranteed.

To add a stream via the web interface, go to the Media tab:
Click add next to Streams:

Then enter the name of the stream and the data source's URL. Click create and Flussonic adds the
stream to the list. By default, created streams are static.

To change the stream's type to on demand, click static next to the stream name.
The stream is added.

Now you can go to the stream settings page, where you can check the ingest status:

On-demand streams

If a stream is not needed all the time but only upon user's request, it is possible to tell Flussonic Media
Server to turn it off when it is not being used and turn back on on demand.

To specify this kind of stream, simply change stream to ondemand:

ondemandEipcamE{
EEurlErtsp://192.168.0.1/channel/101;

}

Important. If the protocol used for communication between the data source and the repeater is RTMP,
RTSP or HTTP MPEG-TS, getting HDS or HLS from the repeater will not be possible due to the fact that
these protocols only work with 10-30 seconds long buffering. The player will not start playback until

this buffer is ready, so the user who appears first will just have to stand and wait until then. The only
kind of data source that doesn't have this problem is another Flussonic server with HLS protocol.
Flussonic Media Server uses its own extensions that allow for immediate playback on iPhone.

It is possible to specify the stream's lifetime after a client has disconnected:

ondemandEipcamE{
EEurlErtsp://192.168.0.1/channel/101;
EEretry_limitE10;

EEclient_timeoutE20;
}

The config line above has the following meaning: make no more than 10 attempts to reconnect with a
data source if the connection is lost; when the last client leaves, run the stream idly for no longer than
20 seconds.

Stream playback

How to playback streams, learn in Video playback.

page 7 from 235



Multi-bitrate stream

To merge two independent sources of the same content to create a multibitrate stream, use the
option

mbr=1

Learn more in the section about multi-bitrate streams from two sources.

Stream screenshots in JPEG

Flussonic Media Server can make JPEG screenshots of streaming video. To use this, install the
additional flussonic-ffmpeg package and turn on the thumbnails option in the stream settings.

streamEortE{
EEurlEudp://239.255.0.100:1234;
EEthumbnails;

}

You can specify an URL where Flussonic Media Server can get screenshots to reduce CPU usage for
thumbnails. Many cameras have a special URL with screenshots:

streamEcamOE{
EEurlErtsp://10.0.4.3:554/h264;
EEthumbnailsEhttp://10.0.4.3/cgi-bin/snapshot.cgi

}

You can find the screenshot URL in the documentation for you camera model.
The stream'’s latest screenshot is available at http://flussonic:8080/ort/preview.jpg
MJPEG screenshot stream is available at http://flussonic:8080/ort/preview.mjpeg

See also:

Thumbnails for JPEG thumbnails.

Video Thumbnails for resource-saving MP4 thumbnails.

Substituting a stream with a file

If for some reason the stream is inaccessible, Flussonic provides the option of substituting it with a
video file.

streamErtrE{
EEurlEtshttp://10.0.4.5:9000/channel/5;
EEbackupEvod/backup.mp4;

—

You need to specify the path to the backup file relative to the VOD-location, for example
vod/backup.mp4, but you can't specify an absolute path.

Note that if the original stream has no audio (for example, a stream from an IP camera), the stand-in
file should have no audio as well.

page 8 from 235



Wildcards

Sometimes the names of streams on a remote server are not known in advance. Use a special stream
type (rewrite):

rewriteEnsk/*E{
EEurlErtsp:/Insk-origin:554/%s;
}

rewriteEams/*E{
EEurlEhls://ams-origin:8080/%s/index.m3us;

}

Here, the rewrite directive is combined with an asterisk (*) at the end of a stream name. This mean
that the substring that precedes the asterisk will replace "%s" in the URL.

Recording video streams (DVR)

Flussonic Media Server has an excellent stream recording system.

The stream archiver can record video, provide access to a particular video interval, export parts of the
archive as MP4 files, clean up old archive files, and maintain ample free space on the storage disk.

To turn on the archiver, specify the dvr option in a stream settings:

streamEfoxliveE{
EEurlEtshttp://trancoder-5:9000/;
EEdvrE/storageE90%E5d;

—

For details, see archive management.

Time zone adjustment (Timeshift)

Flussonic Media Server can play the archive record of a stream with a fixed delay.

Note that Flussonic Media Server maintains the delay painstakingly, so if for some reason the archive
has lacunae, end users will be getting no video for the duration of the gap.

The timeshift feature uses a separate data source protocol:

streamEortE{
EEurlEtshttp://trancoder-5:9000/;
EEdvrE/storageE90%E5d;

}

streamEort-4hE{
EEurlEtimeshift://ort/14400;

}

The delay is specified in seconds.

page 9 from 235



Stream delivery over UDP multicast

Flussonic Media Server is able to rebroadcast a stream from a data source over local network.

Flussonic Media Server does its best to serve UDP as evenly in time as possible in order to avoid sharp
network load increases.

streamEortE{
EEurlEtshttp://trancoder-5:9000/;
EEudpE239.0.4.4:1234;

}

Stream settings for IP surveillance cameras

It is possible to tell Flussonic Media Server to request a stream from camera via UDP only. This might
be necessary when working with cameras that have issues with TCP.

streamEcam1E{
EEurlErtsp://10.0.4.3:554/n264;
EErtpEudp;

}

Important! Of the desktop browsers, H265 is now supported by only Microsoft Edge (version 16 and
higher) and Safari (version 11 and higher). Of mobile browsers N by Safari and Chrome for iOS,
(version 11.0 and higher). Read more in the article CPlaying H265E.

If there is no need to get audio from a camera (for instance, G.726 audio), you can configure Flussonic
Media Server to ingest only one track. The number of the track must be specified in the stream
settings:

streamEcam1E{
EEurlErtsp://10.0.4.3:554/h264;
EEtracksE1;

}

In order to transcode a G.711a or G.711u audio coming from the camera into AAC, the other protocol
must be specified:

streamEcam1E{
EEurlErtsp2://10.0.4.3:554/h264;

}

Turning on audio-only HLS

When validating apps in AppStore, Apple may require the stream to have an audio-only version. If this
command is added to the config:

streamEcam1E{
EEurlErtsp://10.0.4.3:554/h264;

page 10 from 235



EEadd_audio_only;
}

and the stream has both video and audio, Flussonic Media Server will generate a multi-bitrate variant
playlist of two streams: one standard, the other audio-only.

Capturing stream from another Flussonic Media Server

The details of transferring video between Flussonic Media Server servers are discussed in the
Flussonic video stream clusterization article.

DRM in live

The details are discussed in the Apple DRM article.

Stream or group settings

These settings are for use in the directives stream, ondemand, rewrite, and live. We call them options.

auth

auth http://backend/;  Turning on authorization for a stream. See more in the authorization section.

domains

domains hostl.ru *.hostl.ru;  Specifying the domains, within which playing this video is allowed. This
does not work for those clients that do not pass the value of Referer. To work correcty in the WEB the
flussonic domain must present in the list (the domain of the embed.

allowed_countries

allowed_countries RU US CN;  The list of two-character codes of countries where the access is
allowed (for code reference see the MaxMind database).

url

url tshttp://transcoder:port/;  URL of the data source. It is possible to list several URLSs for trying the
first available data source.

Important: If a UDP source is used, the configuration file must contain this particular UDP address
only once. If multiple streams use the same UDP address, chances are it will not work.

urls

urls sourcel source2; A list of data source URLSs. More info about switching sources.

url_prefix

url_prefix prefix for instance url_prefix http://my.domain.address.com:8080 When using HLS
protocol, the addresses of individual segments and playlists within the variant playlist will start with
the specified prefix. This option may be used not only as part of an individual stream'’s settings but
also in the global portion of the config file. If the option is specified globally, it will be applied to all
streams on the server.

dvr

page 11 from 235



dvr /storage 1d 50% schedule=8:00-16:00;  Turning on archiving feature. This command tells
Flussonic Media Server to store archived data in the /storage/streamname directory and clean up that
directory either once a day or when the disk gets 50% full. Instead of days, hours can be specified:
20h. Parameter “schedule™ allows you to set a schedule on the DVR the form of intervals. The time is
specified in UTC in hours and optionally with minutes, the interval can overlap midnight: 22-1:30. A
schedule can contain multiple intervals, separated by a comma: 8:00-16:00,22-1:30.

dvr_offline

dvr_offline /storage 1d 50%; With this option specified, the stream will not turn on archiving on
start. It will have to be turned on explicitly via API. This option used in place of dvr option.

udp

udp 239.0.0.1:5001 multicast_loop; udp 239.0.0.1:5001; This causes Flussonic Media Server to send
the stream via MPEG-TS over UDP. To set MULTICAST_TTL parameter on UDP socket use following
syntax: udp 239.0.0.1:50017?ttI=8;. To set constant bitrate (CBR) use following syntax: udp
239.0.0.1:5001?cbr=2000;, where 2000 is bitrate in kbit/sec.

thumbnails

thumbnails;  Turns on generation of stream preview thumbnails. The flussonic-ffmpeg package must
be installed.

retry_limit

retry_limit 10;  This sets the number of times Flussonic Media Server will try to connect to the data
sources before closing a non-static stream.

clients_timeout

clients_timeout 10;  This sets the time period (in seconds), for which Flussonic Media Server will keep
serving a non-static stream after the client's last request.

source_timeout

source_timeout 10;  Specifies the period of time, in seconds, for which Flussonic Media Server waits
for new frames to come from the data source. When this time passes, Flussonic attempts to reconnect
to the data source. Default source_timeout is 60 seconds.

frames_timeout

frames_timeout 3;  Specifies the period of time, in seconds, for which Flussonic Media Server waits
for new frames to come from the data source before it generates the event frames_timed_out. This
period of time must be smaller than in source_timeout. The event frames_timed_out informs you that
the source might soon be lost. If frames come again from this source, before source_timeout has
passed, Flussonic issues the frames_restored event.

password

password secret; The password that will be passed via query string (http or rtmp) for publication in
a stream or group.

push

push rtmp://destination-server/name;  This option tells Flussonic to publish the stream to another
server.

page 12 from 235



backup

backup vod/blank.mp4;  Setting this option for the stream will launch the specified file
vod/blank.mp4 while the video from the data source is unavailable.

publish_enabled

publish_enabled; Specifying this option for the stream allows to publish video into it. Meaningless
for a group of streams.

on_publish

on_publish http://host/publish.php; on_publish /etc/flussonic/publish.lua; Causes publishing to this
stream or stream group to call a script or send HTTP request with such parameters as the stream
name, publisher's IP, etc. In response it is possible to refuse publication or allow: the HTTP backend
must return 200 OK or 403 Forbidden; the .lua script must return {true, {}} or {false, {}.

max_sessions

max_sessions 1000; Sets the limit on the quantity of sessions for the stream.

settings_rtp

rtp udp;  Turns on obligatory use of UDP for working with RTSP cameras.

add_audio_only

add_audio_only;  Adds to the HLS playlist a link to an audio-only stream. This is needed to validate
the app in Apple devices.

no_prepush

no_prepush;  Turns off the quick-start prepush feature. Might be useful for keeping real-time
streaming.

prepush

prepush 10; Enables a buffer of specified duration, in seconds. If the client's connection to the
server is interrupted or slowed down, it plays video from the buffer, which allows the player to start
faster, but with a lag.

max_ bitrate

max_bitrate 1000;  Sets the bitrate limit for the stream being published.

logo

Version 4.6.15 and above.

logo path=flu/lembed-logo.png height=100 width=100 left=0 top=0;  Add logo at playback. This logo
will not be displayed on mobile devices and in the DVR player. To add logo to video use transcoder.
path (required) N path relative to wwwroot directory. height, width N logo image size in px. If ony
only one of these parameters is present then the other is scaled proportionally. Omit these
parameters to display logo in the original size. left, top, right, bottom N logo image location specified
by offset in px. For example, right bottom corner: right=0, bottom=0. Don't use left and right, top and
bottom parameters together.

mpegts_pids

page 13 from 235



mpegts_pids pmt=4095 sdt=0x12 v1=211 v2=212 a0=220 t0=16#fb;  This parameter sets PIDs values
for outgoing MPEG-TS stream. It is possible to set PID for PMT, STD and tracks. Tracks numbered
starting from one: a1=123 sets PID for the first audio track. It os possible set base index for the tracks
of certain type using the 0 (zero) index. Example: 't0=100" sets PID=101 for the first track, 102 for the
second, and so on. Numbers can be given in decimal form (by default) or in hexadecimal with Ox

prefix.

segments

segments 5;  Specifies the number of segments in the HLS and HDS playlists.

segment_duration

segment_duration 4;  Specifies the duration of a segment for HLS and HDS streams in seconds. For
some incoming streams Flussonic will not apply the specified segment duration. All depends on a
stream's GOPs in seconds. A segment duration must be divisible by GOP because GOP cannot be cut
into smaller parts. For example, for a stream with 4-second GOPs, possible segment duration is
4Eseconds, 8Eseconds, 12Eseconds, and so on. Otherwise, Flussonic will create segments equal to each
GOP in a stream.

segment_count

segment_count 4;  Number of segments for buffering.
group

group sport;  Used only on a source server to define the names of TV channel groups where a
stream is included. [Learn more](/doc/iptv/stream-groups)

disabled

disabled; Stop stream.

page 14 from 235



Publishing video to the server

Flussonic Media Server can accept video from applications and devices that initiate a video broadcast.
This is called

publishing

Publishing can be used in a situation where the device has no static IP or is connected to a private IP
space behind a single address, so Flussonic Media Server has no way of sending a request for video
directly. Flussonic Media Server can receive requests for video publishing via RTMP, RTSP and HTTP
MPEG-TS protocols.

In this case, Flussonic Media Server usually does not know the name of the stream. Quite often the
stream's name is chosen randomly, as it is done, for example, with web chats. This is why, in order to
distinguish published video stream from files, Flussonic Media Server needs a pre-configured
publication prefix.

Content:

Publishing to a static stream

Publishing with a dynamic name
Publishing via RTMP

Publishing via RTSP

Publishing via MPEG-TS

Authorization for stream publishing
Extended publish validation

Archive and dynamic names of streams

Re-publishing

Publishing to a static stream

If you know exactly what the name of the stream will be on the server, you can create a stream
without sources and tell it that you allow publishing:

streamEpublishedE{
EEpublish_enabled,;
}

With this configuration, you can publish videos using the following URLS:

rtsp://flussonic-ip/published
http://flussonic-ip/published/mpegts
rtmp://flussonic-ip/published
rtmp://flussonic-ip/static/published

The important point here is the RTMP URL. If you specify a simple name of the stream, a third-party
software may have a question: what name of the application should it use? Flussonic Media Server
cuts "rtmp" from the application name, so if the software definitely requires some name of the

page 15 from 235



application, specify RTMP. It will look like:

server URL: rtmp://flussonic-ip/static
stream name: published

If you use a complex stream name, for exampleclientl5/publishedl, you may use:

server URL: rtmp://flussonic-ip/client15
stream name: publishedl

With this configuration, you will be able to use all settings of the stream.

Publishing with a dynamic name

If you don't know in advance what name the published stream will have, or there may be many
streams, you can specify the publication prefix:

liveEchatsE{
}

In this case you will need to publish the streams under some names, for example:

rtsp://flussonic-ip/chats/tempname
http://flussonic-ip/chats/tempname/mpegts
rtmp://flussonic-ip/chats/tempname

What comes after chats depends on the client. However, it is important that Flussonic Media Server
does not know the stream name in advance.

The same can be done via the web interface.

Go to the Media tab:
Find the Publish locations section and click add:

Enter a prefix and save the configuration.

The prefix must be unique and may contain Latin characters, digits, underscore (_), and slash (/).
It is strongly recommended to avoid using other characters B client applications might not allow
them (Flussonic itself has no naming limitations).

The publishing prefix is created.

See a more detailed settings description in Stream Settings.

Publishing via RTMP

There are several issues concerning publishing via RTMP. The fact is, the RTMP protocol does not
support proper URLs. When connecting to a server using RTMP, the client must specify the server's
name + application name, and then indicate the stream to be played or published to.

Usually, the shortened version is used where the application name and the stream name are
concatenated. For instance, the pair tmp://rtmp.myhosting.com/chats and chat-15 is turned into
rtmp://rtmp.myhosting.com/chats/chat-15.

The standard practice when interpreting the RTMP pseudo-URL
rtmp://rtmp.myhosting.com/chats/chat-15is to break off the path after the server name on the first
slash and use the first part of the string as the application name.

page 16 from 235



Flussonic Media Server does not support this concept of application. In fact, they are native only for
RTMP and do not exist in other protocols. This is why using the following logic makes sense when
publishing via RTMP:

The server concatenates the application name with the path being published. Thus, the pairs
rtmp://rtmp.myhosting.com/chats/my, chat-15 and rtmp://rtmp.myhosting.com/chats, my/chat-15
give the published stream name chats/my/chat-15

The program searches for the first publishing prefix this name contains. In our example, that would
be the prefix chats

There after, all authorization interfaces and the like use the complete stream name: chats/my/chat-
15.

Publishing over RTMP can be done, for instance, with ffmpeg:

ffmpegE-reE-iE/opt/flussonic/priv/ibunny.mp4E-vcodecEcopyE-acodecEcopyE-fEflvErtmp://localhost/chats/my/chat-15

This will cause a new stream to appear in the web interface:

Publishing via RTSP

Some clients can publish video over RTSP.

Flussonic Media Server supports automatic selection between UDP and TCP transport and will receive
the stream over the protocol of the client's choice.

The stream name must be complete: chats/my/chat-15

ffmpegE-reE-iE/opt/flussonic/priv/bunny.mp4E-vcodecEcopyE-acodecEcopyE-fErtspErtsp://localhost/chats/my/chat-
15

Publishing via MPEG-TS

When transcoding a stream using ffmpeg, it is possible to publish video over HTTP.

To achieve this, the publish_enabled option must be set explicitly in the config:

liveEchatsE{
EEpublish_enabled;
}

Once that is done, the video can be published with mpegts added at the end:

ffmpegE-reE-iE/opt/flussonic/priv/ibunny.mp4E-vcodecEcopyE-vbsfEh264 _mp4toannexbE-acodecEcopyE-
fEmpegtsEhttp://localhost:8080/chats/my/chat-15/mpegts

Authorization for stream publishing

Flussonic Media Server server can verify a password when publishing a stream. Enter the password in
the configuration file as follows:

EEliveEliveE{

page 17 from 235



EEEEpasswordEmypass;
E}

m

EEstreamEs1E({
EEEpasswordEsecure;
EEEpublish_enabled:;
E}

RTMP

m rmy mp

In order to publish an RTMP stream in a password-protected area, enter the data as follows: rtmp
application rtmp://192.168.2.3/live and stream name mystream?password=mypass

HTTP MPEG-TS

In order to publish an HTTP MPEG-TS stream, you can enter the data as follows:

EEEEnhttp://192.168.2.3:8080/s1/mpegts?password=secure
EEEffmpegE-reE-iEvideo.mp4E-vcodecEcopyE-acodecEcopyE-
EflvErtmp://192.168.2.3/live/mystream?password=mypass
EEEEffmpegE-reE-iEvideo.mp4E-vcodecEcopyE-bsfEh264 mp4toannexbE-acodecEcopyE-
fEmpegtsEhttp://192.168.2.3:8080/s1?password=secure

= T

Extended publish validation

Flussonic Media Server allows to configure HTTP handler or user script that will check extended info
about publisher before allowing or disallowing publish.

liveEchatsE{
EEon_publishEnhttp://my-site.com/publish-check.php;
}

or

liveEchatsE{
EEon_publishE/etc/flussonic/publish_check.lua;

}

Flussoni# Media Server send HTTP POST request with JSON body or passes req object to lua script.

JSON request or req has following fields:

name N of published stream (i.e. chats/15) including publish prefix
location N is the publish prefix
proto N is the publishing protocol (rtmp, rtsp, mpegts)

args N extracted from request query string. For rtmp query string is extracted from name of
published string

ip N address of publisher

HTTP handler must return code 200 to start publication. It may also return x-record to tell in which file
to record published stream.

lua script must return pair of true and object. This object may has record_path field with file recording
path.

It is important that if handler tells where to record path, Flussonic Media Server will write endless flv

page 18 from 235



path without any checks of duration, disk space and possible overwriting.

Archive and dynamic names of streams

You can configure the archive for a live prefix:

liveErecordedE{
EEdvrE/storageE3dE500G;

}

In this case, the published video will be recorded, and will be available even if the publication is
terminated.

When the client stops publishing the video, the stream will disappear after some time, and Flussonic
Media Server will know almost nothing about it. CAImostE means that in the index of the archive,
information about this video stream exists, and Flussonic Media Server will not lose the files on the
disk.

The system of cleaning the archive will delete them according to the schedule if such need arises.

Re-publishing

When you use publication prefixes, you can't use push with UDP:

liveEpushedE{
EEudpE239.0.0.1:1234;

}

Or rather you can, but in this case all streams will be sent to the same multicast group with bad
consequences.

Instead, use push with a template (%s) for re-publishing a stream over other protocols:

liveEpushedE{
EEpushErtmp://cdn-server/client43/%s;

}

With this configuration, to republish the stream pushed/mystream, Flussonic will use the URL
rtmp://cdn-server/client43/pushed/mystream.

page 19 from 235



Multicast receiving

Flussonic able to capture the video sent via multicast over UDP MPEG-TS and UDP RTP.

To capture multicast Flussonic has to send an IGMP request to join the multicast group at the right
network interface.

In the simplest case it is necessary to make a stream, give it a hame and add the source:
udp://239.0.0.1:1234

streamEortE{
EEEEurlEudp://239.0.0.1:1234;

}

Select network interface

A server receiving multicast usually has more than one network interface. For example one network
card connected to LAN and used to receive video, and other connected to Internet, used to serve
clients.

WAN interface often goes first and Flussonic by default will send to this interface its IGMP requests
and will not get video.

To explicitly specify which interface must be used to receive multicast, you have to add to url IP
address of this interface. For example, if eth2 have IP 10.100.200.3, then url will look like this:

streamEortE{
EEEEurlEudp://239.0.0.1:1234/10.100.200.3;

}

Capture MPTS

To capture multiprogram transport stream (MPTS) make a streams and add the source and specify
program ID:

streamE1E{
EEurlEudp://239.0.0.1:1234Eprogram=2001;

}

streamE2E{
EEurlEudp://239.0.0.1:1234Eprogram=2002;

}

streamE3E{
EEurlEudp://239.0.0.1:1234Eprogram=2003;

}
OS tuning

page 20 from 235



Linux default settings do not allow to capture video via UDP without loss, so you have to significantly
increase network buffers size.

There is detailed instructions on tuning linux network subsystem in performance article. It is
important to note that to capture HD video recommended buffers size is about 16MB.

Capture issues

If you have any problems with quality of captured video, you should check what the problem is.
Remove all iptables rules. iptables -F.

Disable rp filter: sysctl -w 'net.ipv4.conf.ethO.rp_filter=0" and sysctl -w 'net.ipv4.conf.all.rp_filter=0'".
Change ethO to real interface if it differs.

If you run:
Jopt/flussonic/contrib/multicast_capture.erlEudp://239.0.0.1:1234/10.100.200.3Eoutput.ts

will record 30 seconds video, copy it to your computer and watch that video in VLC, then you will get
an undistorted picture of multicast enters the server. This script does not extract the MPEG-TS but
writes raw multicast to disk.

If at this stage you got a nice smooth video, you can go ahead and run on the server itself:
curlE-oEoutput.tsEhttp://127.0.0.1:8080/ort/mpegts

You will receive the video, which was captured by Flussonic, unpacked and packed back in MPEG-TS.
Download this file to your computer and watch it locally to verify that quality of network connection
does not affect the experiments.

If at this stage the video is also good, but when viewing from Flussonic freezes, the problem most
likely is, that network connection is not enough to transfer video from Flussonic to you.

Switch issues

Sometimes problems arise with the settings of the switches. For example, one client had a problem
with the limit on the number received channels. It turned out that there is a limit on the number of
subscriptions on one port. It is possible to find out with the command:

#debugEigmpEsnoopingEall

If you will see:

%JunE25E15:12:18E2015ESrcIPEisE192.168.121.2, EDstIPEisE226.2.1.16
%JunE25E15:12:18E2015EGroupsEjoinedEhaveEreachedEtheElimit, EfailedEtoEaddEmoreEgroups

it can be fixed with rasing up the limit:

#ipEigmpEsnoopingEvlanEXXElimitEgroupE

Headend problems

We have met issues with group addresses on some headends (without names, sorry =)

Use group numbers from 239.1.1.1 and upper. Sometimes numbers below may be not workable.

page 21 from 235



Data source types

A source is from where Flussonic receives a stream of video data. It can be an IP camera, satellite
headend, HTTP server, and so on. To specify a source of a stream, you need to know its address and
the video protocol over which it's delivered to Flussonic, in other words, a stream's URL.

To send video data between Flussonic Media Servers, use the Flussonic's internal protocol M4F. For
example, use it to replicate a DVR archive or to restream individual streams in a cluster.

Important. Flussonic Media Server does not support the http data source type, and specifying URL as
http://host/path will result in error. A more detailed URL is required that specifies HTTP MPEG-TS or
HLS, or other protocol. This page gives you examples of URLSs for various protocaols.

Important. Do not specify a file on the server as a source. Broadcasting of files is configured another
way N learn more in VOD file broadcasting.

We recommend using M4F to send video from Flussonic to another Flussonic.

m4f://hostname:port/stream N syntax
m4f://flussonic.example.com/channel_01 N example

About the M4F protocol

tshttp://hostname:port/stream N syntax (ingest over HTTP)

tshttps://hostname:port/stream N syntax (ingest over HTTPS)

tshttp://192.168.100.1/worldnews.ts N an example of a real link
An HTTP MPEG-TS data source is, for example, VLC.

udp://239.255.1.1:5500 N a multicast URL
udp://239.255.1.1:5500/192.168.10.1 N the ingest of multicast through the specified interface
udp://192.168.0.1:12345 N a unicast URL

A TCP MPEG-TS data source.

tstcp://192.168.0.1:54321

his://hostname/path/to/manifest. n3u8 N syntax

his://10.0.0.1/news.m3u8 N an example of this URL
his://example.com/news/index.m3u8 N an example of this URL
hiss://hostname/path/to/manifest. n3u8 N ingest over HTTPS
his2://lexample.com/news/index.m3u8 N the ingest of a multi-bitrate HLS source.

HLS source may be a plain HTTP server that sends files from disk. In this case if packager is dead new
files will not appear. Flussonic Media Server will wait for new segments to appear till timeout, then
restart this source and fetch again existing segments. It is possible to look at playlist modification

time, but it is not very reliable. Flussonic Media Server has enabled by default protection from this
situation, this feature is called "stalled check" and it downloads only new segments after first fetch, so
no segments from first fetch will not be used.

Sometimes you may be sure that your source is not a plain HTTP server, but a streaming server that
will not serve outdated segments and you want to enable HLS source in ondemand configuration.

With this protection startup will be extremely slow: Flussonic Media Server will wait for at least 2-3
new segments.

page 22 from 235



You can disable this stale protection with option: skip_stalled check=true;

Use it on your own risk because you can get into situation when old content will repeat again and
again.

streamEortE{

EEurlEhls://source:8080/stream/index.m3u8Eskip_stalled_check=true;

}

As with MPEG-TS HTTP user_agent option available:
his://source:8080/stream/index.m3u8 user_agent="Custom Agent v1.2"

Specifying an RTSP camera's IP address is not enough to get the video from it. The path is also
required. The path is not always provided in the manual, so you might need to contact the camera's
seller or manufacturer.

rtsp://hostname/path N syntax

rtsp://user:password@ip/path N a URL with authorization

rtsp2://hostname/path N enables audio transcoding in AAC. Learn more

rtsp://192.168.0.100/h264 N an example of a real link

rtmp://hostname/application/stream
rtmp://10.0.0.1/live/news

RTMP protocol requires that an RTMP URL has at least two segments. The first segment (application)
is by default used as the name of the RTMP application.

If the name of the RTMP application on the server is made up of more than one segment, add two
slashes to the URL inorder to explicitly divide the RTMP application and stream name.

For tshttp://, udp://, tstcp:// sources you can use additional options:

Ingest of a certain MPEG-TS program and PIDs:

streamEortE{
EEurlEtshttp://source:8080/streamEprogram=21Epids=45,46,47;

}

Reject subtitles

Starting from version 18.08, Flussonic Media Server by default accepts subtitles of published streams.
This is true for streams with either static or dynamic names. So you do not need to set
allow_subtitles=true explicitly.

However, if you do not need subtitles for a stream, set this option to false:

streamEortE{
EEurlEtshttp://source/streamEallow_subtitles=false;

}

Note. For live published streams (streams with dynamic names), subtitles are always enabled. The
option allow_subtitles is not supported for live publishings, so you cannot disable subtitles in this
case.

Enable NIT table bypass:

streamEortE{
EEurlEtshttp://source:8080/streamEbypass_nit=true;

}

page 23 from 235



Enable this option if you want to get EPG data on Flussonic output.

When connecting to a stream over HTTP, you can set the User-Agent HTTP header with the user_agent
option:

tshttp://hostname:port/stream user_agent="VLC"

Custom HTTP header, for example 'Referer:

streamEexampleE{
EEurlEtshttp://source:8080/streamEheader.Referer=https://flussonic.com;

}

timeshift://stream/3600

Timeshift. Allows to create a stream identical to the stream but with a delay of 3600 seconds (one
hour).

shout://source:8080
SHOUTcast data source.

mixer://streaml,stream?2

This configuration allows to add the audio track from the second stream to the video track form the
first stream. Learn more

mosaic://caml,cam2,cam3,cam4?fps=20&preset=ultrafast&bitrate=1024k&size=340x240&mosaic_siz
e=4

This configuration allows to display a number of streams on one screen. This is called a mosaic. Learn
more

page 24 from 235



Sources switching

Backup data sources

As a precaution, you can specify multiple data sources, and Flussonic will switch to another data
source if the first one becomes inaccessible. "Inaccessible” means either immediate disconnect or no
incoming frames from the source for 10 seconds.

streamErtrE{
EEurlEtshttp://10.0.4.5:9000/channel/5;
EEurlEtshttp://10.2.4.5:9000/channel/5;

—

If Flussonic Media Server has switched to a secondary source, it will periodically check if the first
source is up.

streamErtrE{
EEurlEtshttp://10.0.4.5:9000/channel/5Epriority=1Esource_timeout=60;
EEurlEtshttp://10.2.4.5:9000/channel/5Epriority=2Esource_timeout=60;

}
source_timeout

It is possible to specify the period of time, in seconds, for which Flussonic will wait for new frames to
come from this particular data source. When this time passes, Flussonic will attempt to reconnect to
the data source. Individual source_timeout of a source supersedes source_timeout of the stream.
Default source_timeout is 60 seconds.

priority

Sources can be assigned priority. By default, the first source in the list has the highest priority and the
last source in the list has the lowest priority. If priority is not specified for some sources, then default
order is applied. If priority of inaccessible source is the same as priority of the current source, then
Flussonic will not periodically check such inaccessible source.

Source check

Flussonic takes care only about the time since last frame was seen from the source, and switches to
another source if there are no incoming frames during a certain time.

It does not switch sources upon video or audio loss or raising frequency of MPEG-TS CC errors.

Recording

Flussonic writes video from an active source to configured DVR location.

The recording happens even if the last URL point to a local file:

streamEcnnE{

page 25 from 235



EEurlEudp://239.1.2.3:1234;
EEurlEfile://vod/backup.mp4;
EEdvrE/storage;

}

If you want to show backup video when all sources are dead, but don't write it to DVR, use backup

page 26 from 235



Server-Side Playlists

Server-side playlists are created by the video service provider on the Flussonic server.

Server-side playlists have a number of disadvantages when used on the Internet on websites:

you cannot use targeted ads;
you cannot use stats for ads with adriver and other similar networks;

complexity of creating a multibitrate broadcasting: different files can contain different number of
different bitrates;

rewinding is unreasonably difficult to create, while rewinding is one of the major advantages of
online broadcasting compared to classic broadcasting;

the pause is very complex to implement.

The main disadvantage is no means to create an adequate system of ads control. But server-side
playlist areEOK to be used other than on websites. Besides, the practice proved that users are more
willing to watch predefined shows and not to search for video manually.

Instead of server-side playlists, it's recommended to use client-side playlists today. The IPTV
subscriber selects channels to form a playlist.

Usage of server-side playlists

Server-side playlists can be used for:

simultaneous broadcasting on multiple subscriber devices in a local network;

switching between streams from multiple cameras, for example, once per minute.

Creating server-side playlists

If you still want to use server-side playlists, Flussonic Media Server to create and use them.

First of all, create a playlist file, let it be in the directory /tmp/playlist.txt. It contains the list of video
files to play:

vod/videol.mp4
vod/video2.mp4

The config file should contain the following lines:

httpESO;

streamEplaylist1E{
EurlEplaylist:///tmp/playlist.txt;

}

streamEplaylist2E{
EurlEplaylist:/http://host/playlist.txt;

}
fileEvodE{

page 27 from 235



EpathE/var/movies;

}

If the directory /var/movies contains videol.mp4 and video2.mp4, their playback will start
immediately and will be looped.

The playlist also includes control commands:

#EXT-X-MEDIA-SEQUENCE:20
#EXT-X-PROGRAM-DATE-TIME:2013-02-12T12:58:08Z
vod/videol.mp4

H#EXTINF:64,

vod/video2.mp4

Control commands

Flussonic playlists support the following control commands:

#EXT-X-MEDIA-SEQUENCE

The number of the first element in the playlist. You can use it for valid rotation and updating of a
playlist;

H#EXTINF

The duration in seconds of playing a playlist element. You can use it for embedding live;

#EXT-X-UTC
Unix Timestamp of the time when you need to start playing a playlist element;

#EXT-X-PROGRAM-DATE-TIME
Start time for an element, in ISO 8601 format: 2013-02-12T12:58:38Z (GMT).

Each time after playback of a file in a playlist is finished, the playlist is re-read.

Consider the following rules for processing playlists:

If the option EXT-X-MEDIA-SEQUENCE is specified, the playlist remembers the last played item, and
playback continues from the next item after re-reading.

The playlist will be synced from the next number.

If the new playlist contain only numbers less than last number, playlist file will be rereaded every
second, waiting for the correct number;

If the option EXT-X-MEDIA-SEQUENCE is not specified and the playlist file was not changed, then the
next element will be played.
If the file is changed, playback starts from the beginning.

Using streams in a playlist

For example, you have two streams, caml1 and cam2, on your Flussonic server:

streamEcam1E{
EurlEErtsp://192.168.1.21:554/user=admin&password=&channel=0&stream=0;
}

streamEcam?2E{
EurlEErtsp://192.168.1.22:554/user=admin&password=&channel=0&stream=0;

}

page 28 from 235



In playlist.txt write the stream names as follows:

#EXTINF:E60
caml
#EXTINF:E60
cam2

Playlist status information

You can request information about the state of the playlist of the specified stream.
URL:E/flussonic/api/playlistSTREAM_NAME
Example:Ehttp://example.flussonic.com:8080/flussonic/api/playlist/example_stream

Parameters:E

STREAM_NAME N the name of a stream that contains the playlist
(required)

Response:EJSON like

{

EEEE"current_entry":"vod/irmp4",EEE//TheEcurrentlyEplayedEitem
EEEE"current_type":"file",EEE//TheEtypeEofEtheEcurrentlyEplayedEitem
EEEE"duration”:null,EEE//DurationEofEtheEcurrentEitem, EinEmilliseconds('null'EstandsEforE'undefined)
EEEE"position":5.22e4EEE//CurrentlyEplayedEpositionEinside EtheEcurrentEitem, EinEmilliseconds

}

About server-side playlists.

page 29 from 235



Overlay logo

Overlay logo

There are 2 ways to overlay logo with Flussonic Media Server:
With web player. Player adds transparent layer with your image. This way is well suited for embeding
video to website.

With transcoder. This is a resouce-intensive proccess but allow to burn image into the video track.
Will be impossible to hide or delete this logo. Suitable for Set-Top-Boxes.

HTML Overlay

Available from version 4.6.15. This logo will not be displayed on mobile devices and in the DVR player,
but it does not generate additional load on the server.

Config example:

streamEortE{
EEurlEEudp://239.0.0.1:5000;
EElogoEpath=flu/erly-small.pngEheight=100Ewidth=100Eleft=0Etop=0;

logo path=flu/erly-small.png height=100 width=100 left=0 top=0;

path (required) N path relative to wwwroot directory.

height, width N logo image size in px. If ony only one of these parameters is present then the other
is scaled proportionally. Omit these parameters to display logo in the original size.

left, top, right, bottom N logo image location specified by offset in px. For example, right bottom
corner: right=0, bottom=0. Don't use left and right, top and bottom parameters together.

Transcoder logo

Logo will burned to video track and displayed on any devices and DVR records.

Config example:

streamEortE{
EEurlEEudp://239.0.0.1:5000;
EEtranscoderEvb=2048kEpreset=fastElogo=/path/to/erly-small.png@10:10Eab=128k;

}

10:10 are coordinates of the top left corner of the screen. To place a logo in another part of the
screen a slightly more complex formula should be written. For example, to place logo in the center:

streamEortE{

EEurlEEudp://239.0.0.1:5000;
EEtranscoderEvb=2048kEpreset=fastElogo=/path/to/erly-small.png@(main_w-overlay w-10)/2:(main_h-
overlay_h-10)/2Eab=128k;

}

To place logo in the bottom left corner:

streamEortE{

page 30 from 235



EEurlEEudp://239.0.0.1:5000;
EEtranscoderEvb=2048kEpreset=fastElogo=/path/to/erly-small.png@10:(main_h-overlay h-10)Eab=128k;
}

To place logo in the top right corner:

streamEortE{
EEurlEEudp://239.0.0.1:5000;
EEtranscoderEvb=2048kEpreset=fastElogo=/path/to/erly-small.png@(main_w-overlay w-10):10Eab=128k;

}

To place logo in the bottom right corner:

streamEortE{

EEurlEEudp://239.0.0.1:5000;
EEtranscoderEvb=2048kEpreset=fastElogo=/path/to/erly-small.png@(main_w-overlay w-10):(main_h-overlay h-
10)Eab=128k;

}

More about transcoder settings.

page 31 from 235



Mixer

Mixer

Flussonic Media Server is able to create a new stream using video and audio from other live streams.
This can be used to add sound to a stream from a surveillance camera.

Create a new stream and specify the protocol mixer:// and the names of the two streams you are
using: the one that will provide video and the one that will provide sound as sources:

streamEmixE{
EEurlEmixer://stream1,stream2;

}

where:

stream1 is the name of the live stream that will provide the video track.
stream2 is the name of the live stream that will provide sound only.

WARNING! The Mixer only works with live streams that have already been added to Flussonic Media
Server. Do not try to use VOD files or specify a source in the string that contains mixer://.

Example

For example, you have a stream from a surveillance camera called cam1(h264 video + pcmu sound),
but the camera is placed very high on a pole and the only thing you can hear is the wind.

streamEcam1E{
EEurlErtsp://cam1.local/h264;

}

It makes sense to turn off sound completely in this case:

streamEcam1E{
EEurlErtsp://icami.local/n264Etracks=1;

}

It is also possible to use the Mixer to create a new stream that will add sound from another source
(e.g. aradio):
streamEcam1E{
EEurlErtsp:/icam1.local/n264;
EEdvrE/storageE7d;

}

streamEradioE{
EEurlEshout://fexample.com/fm;
}

streamEcam1radioE{
EEurlEmixer://cam1,radio;

}

In this configuration we will have a stream called camlradio that we can add to our website. Viewers
will be able to listen to radio while watching the video stream, which can be useful during emergency
situations. The original stream caml with the sound from the camera will be saved to the archive.

page 32 from 235



WebRTC Publishing

WebRTC

WebRTC is P2P protocol of communication between two clients, however it specifies only the data
transfer by the already established connection. l.e. to communicate with each other by WebRTC, two
browsers need to be connected some way, for example by opening the same website in the Internet,
that will get them in touch. Connection can also be established by means of a mediator, so called
signaling server.

So there are two clients and a signaling server, that connects these clients, in WebRTC. The process of
establishing P2P connection between the two clients is the exchange of media streams textual
descriptions in SDP format. The signaling server (the mediator) makes it possible to transfer SDP from
one client to the other.

Standard scheme of P2P communication by WebRTC means that there should be two sessions
arranged: audio-video stream from A client to B client, and vice versa b from B to A.

Flussonic Media Server can be the signaling server and the client at the same time, both getting and
sending the video stream. Therefore here we may talk of video publishing on Flussonic Media Server
by WebRTC and of video play by WebRTC.

Video and audio stream publishing by WebRTC

The procedure of connection establishment for the video and audio stream publishing to Flussonic
Media Server by WebRTC is pretty much similar to video receiving. The principle here stays the same b
participants should exchange SDP via the mediator (signaling server), and then start the direct data
transfer. However in case with video publishing the information exchange with the signaling server

goes in a slightly different manner. The process should be initiated and the SDP offer should be sent
from the clientOs end. This is the core difference.

Attention! Please note, that in some browsers WebRTC video and audio streams publishing is possible
by secure connection only. l.e. browser can deny access to the camera and microphone from a page
located not by HTTPS, but by HTTP address. This is allowed on local addresses (localhost, 127.0.0.1).

Like in case with the video sending, the result of SDP exchange by means of the signaling server
should be a local PeerConnection object with LocalDescription and RemoteDescription given
properties, that contains the local and the remote SDP description accordingly.

To initiate the WebRTC connection with Flussonic Media Server one should open WebSocket
connection with Flussonic Media Server by the following address:

ws://flussonic-ip/STREAMNAME/webrtc/publish

where flussonic-ip is an example of your Flussonic Media Server address and port. Ws and wss
protocols are supported.

For the further direct P2P connection setting one should create PeerConnection and set
onicecandidate handler. After WebSocket connection is established, client should send SDP offer to
the WebSocket, and the same offer should be set as LocalDescription. When the server gets the offer,
it sends its identifier (SDP Answer) in return.

This SDP answer should be processed on the client (it should be set as RemoteDescription for the
previously created PeerConnection).

functionEopenWebSocketConnection(options)E{

page 33 from 235



EEvarEurlE=
EEEoptions.protocolE+E"://"E+
EEEoptions.serverE+E":"E+
EEEoptions.portE+E"/"E+
FEEoptions.streamE+E"/webrtc/publish”;

m> m mp [mp

EEwebsocketE=EnewEWebSocket(url);
FEwebsocket.onopenE=EinitPeerConnection;
EEwebsocket.onmessageE=EonWebSocketMessage;
}

functionEinitPeerConnection()E{
EEpeerConnectionE=EnewEwindow.RTCPeerConnection(null);
EEpeerConnection.stream_idE=E"local1";
EEpeerConnection.onicecandidateE=EgotlceCandidate;

EEgetMedia().then(gotMedia);
}

functionEsendWebSocketMessage(data)E{
EEwebsocket.send(JSON.stringify(data));

}

functionEonWebSocketMessage(event)E{
EEvarEmessageE=EJSON.parse(event.data);
F EswitchE(message.type)E{
EEEEcaseE"answer":

EEEEEEpeerConnection.setRemoteDescription(description);
EEEEbreak;
caseE"candidate":

(I
m
(I
[

In onicecandidate handler of PeerConnection object it is required to implement IceCandidate message
sending to the open Web Socket. After that Flussonic Media Server returns the message, that contains
IceCandidate SDP, via the WebSocket. At this stage we can be sure, that both sides know each otherOs
SDP and the direct connection can be initiated.

functionEgotlceCandidate(event){
EEvarEcandidateE=Eevent.candidate;
EEifE(candidate)E{

EEEEsendWebSocketMessage({

EEEEEEtype:E'candidate’,

EEEEEElabel:Ecandidate.sdpMLinelndex,

EEEEEEid:Ecandidate.sdpMid,

page 34 from 235



As you can see, the code is almost identical to the one in WebRTC video receiving example. There is
some difference though. When publishing video, we send SDP offer from the clientOs end, and thus we
should process the SDP answer, that comes from the server.

It is also necessary to get access to the deviceOs webcam and microphone in order to set video and
audio streams to the server. This can be done with the help of navigator.mediaDevices API. We can
also set srcObject property in the local HTML5 Video tag. It no way affects the mediastream sending to
the server, but it allows to see the outgoing content.

functionEgetMedia()E{
EEreturnEnavigator.mediaDevices.getUserMedia({
EEEaudio:Etrue,

EEEvideo:Etrue

ED):

=~ m m

functionEgotMedia(stream)E{
EEvideo.srcObjectE=Estream;
EEpeerConnection.addStream(stream);

|'|'|>

EpeerConnection.createOffer({
EEE"offerToReceiveAudio":Etrue,
EEE'
E}).then(function(description)E{
E
th

|'|'|) m»

‘offerToReceiveVideo":true

> |'|'|>

EEEreturnEpeerConnection.setLocalDescription(description);
E}).then(function()E{
EEEsendWebSocketMessage(peerConnection.localDescription)

=)

=~ m m I'|'|>

The complete code of the example can be found here.

page 35 from 235



Decklink SDI

Flussonic can capture video directly from Decklink SDI or HDMI capture card.

You need to install Blackmagick drivers, update card and then configure stream as:

streamEsdiE{
EEurlEdecklink://0Eenc="vb=1024kEpreset=superfastEtune=zerolatencyEab=32k";

}

Flussonic will take first device (0) and use its autoconfiguration ability to capture video.

page 36 from 235



Push to other servers

Copying the stream to other servers (push)

Flussonic can be told to push a stream to other servers, for instance, to CDN:

streamEbreakingnewsE{
EEpublish_enabled;
EEpushErtmp://cdnl/myapp/breakingnews;
EEpushEtshttp://cdn2/breakingnews;
EEpushEhls://cdn3/breakingnews;

}

The server push communication supports RTMP, HTTP MPEG-TS and HLS.

Example configuration for CDN Akamaihd:

streamEbreakingnewsE{

EEpublish_enabled:;

EEsegment_countE10;

EEsegment_durationE10;
EEpushEhttp(s)://post.[HOSTENAME].akamaihd.net/[STREAMEID]/[ANYESTREAMENAMEYJ/;
}

page 37 from 235



DVB subtitles OCR recognition to WebVTT

Starting with version 4.7.2, Flussonic Media Server now has the ability to recognize DVB subtitles in
WebVTT. Recognition is implemented using the Tesseract program.

DVB subtitles

The DVB standard (Digital Video Broadcast) defines a bitmap based subtitling format.

In the DVB stream from the MPEG-TS satellite, both the text and the picture can be subtitled. Most
often it's a picture because it's so much safer for viewing on different devices that may not have the
right fonts for drawing text.

For example:

ffmpegE-iEvideo.tsE

StreamE#0:0[0x1a4]:EVideo:Eh264E (High)E([27][0][0][0]E/E0x001B), Eyuv420p(tv,Ebt709), E1920x 1080E[SAREL: 1ED
ARE16:9],E25Efps,E25Etbr, E90kEtbn, ES0Etbc

StreamE#0:1[0x1ae](fra): EAudio:Eeac3E([6][0][0][0]E/E0x0006),E48000EHz, Estereo, Efltp,E128Ekb/s
StreamE#0:2[0x1af](qad):EAudio:Eeac3E([6][0][0][0]E/E0x0006),E48000EHzZ,Estereo, Efltp, E128Ekb/s
StreamE#0:3[0x1b8](fra):ESubtitle:Edvb_subtitleE([6][0][0][0]E/E0x0006)E (hearingEimpaired)
StreamE#0:4[0x1b0](qaa):EAudio:Eeac3E([6][0][0][0]E/E0x0006),E48000EHz, Estereo,Efltp,E128Ekb/s
StreamE#0:5[0x1b9](fra):ESubtitle:Edvb_subtitleE([6][0][0][0]E/EOX0006)

Here dvb_subtitle are subtitles that come in images.
Such subtitles can show video-consoles, some TVs, a VLC player, but not an iPhone / Android.

Flussonic Media Server can convert pictures back to the original text in order to be able to show
subtitles on mobile devices and players without DVB support.

WebVTT subtitles

WebVTT (Web Video Text Tracks Format) is a common subtitle format that is supported by browsers
and provides other options. Recognizing DVB subtitles in WebVTT, you can reduce the load on the
transmission of the stream.

The WebVTT format file is a regular text file with the extension .vtt, in which in the form of a line-by-
line list labels with start time and end time and text messages for output to these labels are
registered. To the video container, you can connect several WebVTT files with text in different
languages. For each language you need to create a separate file.

These files can be used to transfer additional data to JS players. For example, URL image preview for
video frames. The WebVTT standard also supports CSS styling and placement options in the video
preview area.

Installation

Tesseract N high-quality console OCR engine with open source. Currently, the program works with
UTF-8, and language support (including Russian version 3.0) by means of additional modules.

For Ubuntu, you can install the package flussonic-tesseract:

page 38 from 235



aptEinstallEflussonic-tesseract

After installing Tesseract, enable the options for the stream:

dvbsubs_ocr=true;

Example:

streamEortE{
EEurlEtshttp://source:8080/streamEdvbsubs_ocr=true;

}

Do not forget to apply the new configuration with the command: /etc/init.d/flussonic reload

If Tesseract has started successfully, the following entries appear in the logs:

09:44:17.986EE[sow]Etesseract_worker:58EstartEocrEforEslv
09:44:18.275EE[sow]Etesseract_worker:58EstartEocrEforEsrp
09:44:18.759EE[sow]Etesseract_worker:58EstartEocrEforEswe
09:44:19.045EE[sow]Etesseract_worker:58EstartEocrEforEdan
09:44:19.328EE[sow]Etesseract_worker:58EstartEocrEforEnor

Example index.m3u8 with subtitles:

#EXTM3U

#EXT-X-MEDIA: TYPE=SUBTITLES,GROUP-
ID="subs",NAME="English",DEFAULT=YES,AUTOSELECT=YES,FORCED=NO,LANGUAGE="eng",URI="http://flu
ssonic-ip/index.m3u8"

#EXT-X-MEDIA:TYPE=SUBTITLES,GROUP-
ID="subs",NAME="French",DEFAULT=NO,AUTOSELECT=YES,FORCED=NO,LANGUAGE="fra",URI="http://fluss
onic-ip/index.m3u8"

#EXT-X-MEDIA:TYPE=SUBTITLES,GROUP-
ID="subs",NAME="German",DEFAULT=NO,AUTOSELECT=YES,FORCED=NO,LANGUAGE="deu",URI="http://flu
ssonic-ip/index.m3u8"
H#EXT-X-STREAM-INF:PROGRAM-1D=1,BANDWIDTH=450560,RESOLUTION=480x352,SUBTITLES="subs"
http://flussonic-ip/index.m3u8
#EXT-X-STREAM-INF.PROGRAM-ID=1,BANDWIDTH=855040,RESOLUTION=480x352,SUBTITLES="subs"
http://flussonic-ip/index.m3u8

page 39 from 235



Video playback

Stream playback

Flussonic Media Server can play back video streams via various protocols. This section describes the
URL addresses that you can use in players in order to play video via different protocols.

embed.html

URL: http://flussonic-ip/STREAMNAME/embed.html

Flussonic Media Server has a special page embed.html which is intended for video insertion to a
website or viewing of video via a browser. The page automatically detects a browser version to select
a supported protocol. For the majority of devices for today N it's HLS. Read more in the article CVideo
insertion on the website (embed.html)E.

HLS

URL for the player: http://flussonic-ip/STREAMNAME/index.m3u8

Read more in CHLS playbackE. Use (embed.html)or any third-party player to insert HLS stream on your
website. For example, hls.js or clappr.

HLS for multi-language streams, viewing using an STB or VLC

URL for the player: http://flussonic-ip/STREAMNAME/video.m3u8
Read more in CMultilanguage HLSE.

HTML5 (MSE-LD)

The stream is available at the URL: http://flussonic-ip/STREAMNAME/embed.html?realtime=true
Read more in CHTML5 (MSE) low latency playbackE.
HDS

URL for the player: http://flussonic-ip/STREAMNAME/manifest.f4m
DASH

The stream is available at the URL: http://flussonic-ip/STREAMNAME/index.mpd

Also Flussonic Media Server has special playlist "rewind-N.mpd" with a wide sliding window that allows
to rewind and pause DASH streams for many hours. http://flussonic-ip/STREAMNAME/rewind-
7200.mpd

Read more in CDASH playbackE.
HTTP MPEG-TS

The stream is available at the URL: http://flussonic-ip/STREAMNAME/mpegts
RTMP

The stream is available at the URL.: rtmp://flussonic-ip/static/STREAMNAME
RTSP

The stream is available at the URL: rtsp://flussonic-ip/STREAMNAME

page 40 from 235



WebRTC

The stream is available at the URL: ws://flussonic-ip/STREAMNAME/webrtc
Read more in CWebRTC PublishingE.

SHOUTcast

The stream is available at the URL: http://flussonic-ip/STREAMNAME/shoutcast

Flussonic Media Server can deliver SHOUTcast, ICEcast radio stream.

page 41 from 235



HLS playback

Flussonic Media Server supports playing video via HLS protocol.

Many of Flussonic's features use non-standard extensions of HLS B we support them for your
convenience.

The supported codecs are: H264, H265, MPEG2 video, AAC, MP3, MPEG2 audio, and AC-3.

Flussonic Media Server supports access via HLS to live streams, VOD files and DVR (catchup and
timeshift).

Just playing HLS

When you have a simple live stream or file (one video track, one audio track) for playing, the URL for
playback via HLS is simple:

http://flussonic-ip/STREAMNAME/index.m3u8

<video src="http://192.168.2.3:8080/ort/index.m3u8" controls></video>

where flussonic-ip is an example of your Flussonic Media Server host + port address.

Flussonic Media Server will also accept playlist.m3u8 in the end of url for backward compatibility with
other servers.

When you start working with multi-language or multi-bitrate content, things become more
complicated.

Multilanguage HLS
If you want to play your multilanguage stream on iPhone you need to use the same http://flussonic-
ip/STREAMNAME/index.m3u8

But when you want to watch a multi-language stream using VLC or a set-top box, the video mode
must be turned on.

URL for the player will be: http://flussonic-ip/STREAMNAME/video.m3u8
<video src="http://flussonic-ip/STREAMNAME/video.m3u8" controls></video>

This is due to the Apple HLS requirement of a separate playlist with an audio-only option for each
individual language. MPEG-TS uses another algorithm: all audio tracks are packed in the same
container with the video, and it is up to the player which one to play. So, to make sure the video is
viewable on iPhone, it must satisfy the requirements of Apple. At the same time, VLC and STBs, in
violation of the HLS standard, expect the old version of MPEG-TS converted to HLS. This is why this
trick with different urls is needed.

Add CAudio onlyE for Apple

Apple requires that all your streams must include variant without video, only with audio.

They consider that if user is watching video on a 3G and moves to bad network conditions, better it
will be audio only than buffering.

You can enable it in Flussonic Media Server:

page 42 from 235



streamEortE{
EEurlEudp://239.0.0.1:1234;
EEadd_audio_only;

}

Mention that this may make your index.m3u8 url unplayable on VLC or STB, so you will require
video.m3u8 option.

Separate bitrates for STB

When you have a multibitrate multilanguage content and want to play it on STB that doesn't support
multibitrate HLS playlists, you can query from Flussonic Media Server separate playlists with one video
track and all audio tracks as with

mono

option:

http://flussonic-ip/STREAMNAME/videol.m3u8

This playlist is not a variant playlist, but it is a playlist with urls to segments that contain first video
track and all available audio tracks.

If you want to deliver multilanguage multitibtrate to STB that doesn't understand Apple standard for
multilanguage, use video.m3u8:

http:/flussonic-ip/STREAMNAME/video.m3u8

This is a variant playlist that will give you list of non variant playlists like videol.m3u8, video2.m3u8,
etc.

DVR catchup playback

When your stream is already recorded on server with our DVR you can play video via HLS when you
know beginning of telecast and end for example from EPG.

Available URLs will be:
http://flussonic-ip/STREAMNAME/archive-1362504585-3600.m3u8

This is a regular playlist that will be variant playlist if you have more than one language or more than
one bitrate.

It will give a list of segments starting from UTC 1362504585 ( 2013, March, 5th, 17:29:45 GMT) and for
one hour forward.

The mono url will give you list of segments that contain all tracks in mpegts:
http:/flussonic-ip/STREAMNAME/mono-1362504585-3600.m3u8

More specific videoN playlist will give you a list of segments with N'th video track and all audio tracks:
http:/flussonic-ip/STREAMNAME/video1-1362504585-3600.m3u8

and a variant video playlist with list to videoN playlists:
http://flussonic-ip/STREAMNAME/video-1362504585-3600.m3u8

page 43 from 235



Rewind playlist

Flussonic Media Server has special playlist "rewind-N.m3u8" with a wide sliding window that allows to
rewind and pause HLS streams for many hours.

http://flussonic-ip/STREAMNAME/rewind-7200.m3u8

7200 is a duration of HLS manifest in seconds, so your clients will able to pause stream up to 2 hours
or rewind to the start of TV show without accessing catchup URLSs.

DVR timeshift playback

If you have recorded stream on disk but haven't configured a timeshift stream then you can play video
with a propely constructed HLS url.

Here goes list of available urls for relative timeshift:

/timeshift_rel-3600.m3u8

/mono-timeshift_rel-3600.m3u8
/video-timeshift_rel-3600.m3u8
Ivideol-timeshift_rel-3600m3u8

and for absolute timeshift:
/timeshift_abs-1508403742.m3u8
/mono-timeshift_abs-1508403742.m3u8
/video-timeshift_abs-1508403742.m3u8
/videol-timeshift_abs-1508403742.m3u8

page 44 from 235



Video insertion on websites (embed.html)

Flussonic Media Server has a special page

embed.html

which is intended for video insertion to a website or viewing of video via a browser. Technically,
embed.html

is the same player that is used in the admin Ul of Flussonic Media Server.

It is available via the link:
http://hostname/streamname/embed.html

The page automatically detects a browser version to select a supported protocol. For the majority of
devices for today N it's HLS.

Important. Video playback might start without sound due to the autoplay policy of browser vendors.
The following link explains the policy and conditions for the sound to turn on automatically. Chrome
autoplay policy as an example

When opening embed.html directly (by entering the link in the address bar), the video will expand to
the size of the browser window and start playback automatically.

Also, you can use embed.html to insert video on a website, the HTML code for insertion is available on
the Overview page of each stream in the admin interface. Example:

The code inserts a player window with a fixed dimension (640x480px) to the page. Playback starts
automatically.

Options

For most applications no additional configuration is required, but still embed.html has parameters
that can be specified via the URL. Additional parameters are set in the address bar:

http://hostname/streamname/embed.html?autoplay=false&play_duration=600

autoplay N autostart playback when the page is opened. The default value is true, to disable set
false. Displays screenshots before viewing.

play_duration N amount of seconds until video playback stops. The default is off. Useful for saving
traffic.

realtime N enables broadcasts via low latency protocols. Automatically selects between MSE-LD,
RTMP or WebRTC. Is disabled by default, set true value for video playback with low latency.
Attention! Low-latency broadcast consumes more CPU and network resources, do not use it without
a real need, more details in a separate article.

dvr N opens the archive player. To access the file, specify the value true. See DVR player below for
details.

ago N allows users to rewind back. The value is specified in seconds. The default is off. It's more
convenient than DVR player for viewing video in the last few minutes or hours. Ideal for pausing and
rewinding live video on the site. For example, the rewind hour is given by: embed.html?ago=3600.

from N Unix timestamp of record start. If this option is specified the player will timeshift-abs of the
playlist from the specified time.

page 45 from 235



to N Unix timestamp of record end. Used only in conjunction with from. The player will open HLS
VOD, rewind will be available within the specified interval.

An example of access to video from the archive. For example, recording a TV show:
http://hostname/streamname/embed.htm|?from=1511300552&t0=1511300852

Its better to generate such links via server side scripts, based on program guide (EPG) for the
organization of a CatchUp service.

DVR player

Archive player can be opened by the link:
http://hostname/streamname/embed.html|?dvr=true

The player can play the video from the archive, calendar is available for large archives in addition to
timeline. The player interface allows you to set the timeline scale, enable fast playback and save the
specified interval as an MP4 file.

All extra address line parameters are available to DVR player except ago.

The player interface allows you to automatically generate links in format
embed.html?dvr=true&from=1511300552 without an additional tools. Just open a right time with
timeline and click on the clock to open the link with from parameter.

Old embed.html

The embed.htmlpage has been greatly redesigned in Flussonic 4.7.0. For backwards compatibility, the
old version is available at:

http://hostname/streamname/embed.html?version=1

page 46 from 235



HTML5 (MSE-LD) low latency playback

For a long time Flash player was the best and the only way to deliver video to web pages with
relatively low latency (delay).

It can be required for webinars, broadcasting sports for bets, or some kind of remote control.

Right now Flash is scheduled for graceful removal in modern browsers, so WebRTC was added to
browsers, but it has limited support for audio and video codecs (not all flavors of H264 are supported,
no AAC support).

So we offer a new way to solve this problem and allow watching video with a built-in HTML5
mechanism and really low latency.

Low latency playback in HTML5

Open an URL like this:
http://flussonic-ip/STREAMNAME/embed.html?realtime=true

If everything is OK (good codecs, working stream, working websockets), you will instantly get video
with the delay of about one second.

Under the hood

We use the MSE mechanism to deliver and play frames, so the supported video/audio codecs will be
the same as in your browser. Usually H264 and AAC are supported, the rest is not supposed to work.

You don't need anything except HTTP or HTTPS to run this, so it may be a good way to play video in
restricted environments.

You can also use our player inside your application without iframe. Read about our MSE javascript
player

page 47 from 235



MSE Player

You can use our open-source low latency player in your app.

Quick start without NPM

You can get the module for support of MSE LD player at http://flussonic-
ip:8080/flu/assets/FlussonicMsePlayer.js

First, add the script to your HTML file:
<script type="text/javascript" src="/flu/assets/FlussonicMsePlayer.js"></script>

Second, initialize the player, attach it to a <video/> element and then start playing:

T
m»

m»

Ewindow.onloadE=Efunction()E{

m»

EEEvarEelementE=Edocument.getElementByld(‘player);

m»

EEEwindow.playerE=EnewEFlussonicMsePlayer(element,EstreamUrl);

[

EEEwindow.player.play();
E}

(I

Run:

npmEinstallE--saveE@flussonic/flussonic-mse-player

Then import it into JS:

importEFlussonicMsePlayerEfromE' @flussonic/flussonic-mse-player'

constEplayerE=EnewEFlussonicMsePlayer(element,Eurl,Eopts)

Sample app with webpack and our MSE player.

You can find the source code of MSE player on github: flussonic/mse-player

varEplayerE=EnewEFlussonicMsePlayer(element,EstreamUrl)

element N <video> a DOM element.

streamUrl N the URL of a stream.

Methods:

play() start playing
stop() stop playing
setTracks([videoTrackld, audioTrackld]) set up video and audio tracks for playback

page 48 from 235



getVideoTracks() return available video tracks(you should use it into onMedialnfo callback method)
getAudioTracks() return available audio tracks(you should use it into onMedialnfo callback method)

Event callbacks

onProgress(currentTime) - triggered every 100ms while a stream is playing and gives current playback
time.

onMedialnfo(metadata) - triggered when metadata of the stream is available. The metadata includes a
common information of the stream such as width, height, information about mbr streams and so on.
After this callback triggered you can use getVideoTracks()/getAudioTracks() methods.

Using mutli-bitrate tracks

For example, there is a video stream that includes three video tracks: v1(800k), v2(400k), v3(200k) and
two audio tracks: al1(32k), a2(16k).

To set default tracks to v2 and al, use the tracks URL parameter with track names:
‘ws://flussonic-ip/stream_name/mse_ld?tracks=v2al’

And pass the URL to the player constructor.

You can get all available video/audio tracks:

inside onMedialnfo(metadata) callback, by parsing metadata:

m
m»
]
=
@D
Q
3
0
m»

inside onMedialnfo(metadata) by calling getVideoTracks()/getAudioTracks() methods.

To set tracks for playback, use setTracks([videoTrackld, audioTrackld]) method.

m
m»
m
m
=3
<)
<
)
n
(@]
o
>
—
=R
>
D
=
m
—~

EEEE)

EEEE#playerE{
EEEEEEposition:Erelative;

EEEEEEwidth:E100%;

EEEE}

page 49 from 235



EEEE. mbr—controIsE{

m
m»
m
m
)
]
—
m»
f;f
Q
o
=
7]

_ld;

EEEEEEEEEEEE <optionEvalue="${v['track_id" ]} >${v[ bitrate [JE${v['codec TIES{V['fps TIES{v[' width'}x${v['height
T}</option>"

page 50 from 235



EE

page 51 from 235



Sending a multicast

When working with IPTV, one often has to deal with videos transmitted as multicasts. In most cases, a
multicast contains an MPEG-TS container (7 188-byte packets in each UDP packet). Less frequently, an
RTP Protocol in transmitted into the network that contains the same MPEG-TS. RTP is needed to make
it possible to track the losses, since the RTP packet contains a 16-bit counter that is used to track
sequence numbers.

Brief basics of multicast

A multicast is a set of UDP packets transmitted from the same source to a group of subscribers. The
address to which packets are sent is usually in the range between 224.0.0.0 and 239.255.255.255,
however, 224.0.0.0/8 is not recommended due to the large number of special addresses.

In a properly configured network, multicast traffic is sent to the nearest router, and the router itself
chooses the client to send the traffic to, based on the requirements of the clients. The requirements
are transmitted via the IGMP protocol that is used for transmitting messages about the need to
include some address into the distribution group, or exclude it from the group.

Therefore, in order to make Flussonic send multicast to client devices, it is necessary to make it send
the packets to the proper interface (in a local operator network), and the router should be configured
to work correctly with multicast.

Configuring Flussonic

To configure a multicast distribution, it is enough to specify the push option in stream settings. The
push option specifies the multicast address:

streamEortE{
EurlEhls://provider.iptv/ort/index.m3u8;
EpushEudp://239.0.0.1:1234;

}

You can also do it via the web interface: create a new stream, specify the source URL and add the
multicast address in the push option N udp://239.0.0.1:1234

You can select what tracks to send:

streamEortE{
EurlEhls://provider.iptv/ort/index.m3u8;
EpushEudp://239.0.0.1:1234?tracks=v2a4;

}

Here, v2 stands for the second video track and a4 for the 4-th audio track.

Configuring the server

After you set up multicasting, chances are that nothing will work, since very often, due to server
settings, multicast traffic is sent to the first interface, which usually looks into the Internet. You need to
make Flussonic start sending traffic to an interface that looks into a local network.

routeEaddE-netE239.0.0.0/8EdevEeth?2

page 52 from 235



Here, eth2 is the name of the interface connected to the local network. After you set up routing in this
way, the multicast from Flussonic will be routed to the proper interface, and you can check it at the

router, and at the client.
A reverse situation with ingesting multicast streams is described in the article Receiving multicast

page 53 from 235



Constant bitrate UDP

We assume that you have read page about sending UDP multicast, because this page is an extension
of that basic article.

Here you can learn how to configure Flussonic Media Server to send UDP multicast video suitable for
muxing to DVB-C and DVB-S streamers.

Media requirements

When you want to send video to DVB-C network or even to satellite you can get a strict hardware
requirement: constant bitrate (really constant, not constant average) and frequent PCR insertion.

Sometimes you can meet very smart DVB muxer that will be able to merge streams together and
allow variable bitrate, but usually you need to fill your dedicated band with MPEG-TS bytes.

Flussonic Medai Server can do it by adding zero padding that cannot be added by headend.

Also this device will require sending PCR (stream timing) very often: up to once per 20 ms, so it may
happen that we will need to put 2 PCR during single frame.

This is also possible with Flussonic Media Server.

Configuration

Configure UDP push in stream with several options:

streamEortE{
EurlEhls://provider.iptv/ort/index.m3us8;
EpushEudp://239.0.0.1:12347cbr=2200&pcr=20;
}

Here you tell to pad bitrate up to 2200 kbit per second and put PCR each 20 milliseconds.

page 54 from 235



WebRTC Playback

WebRTC

WebRTC is P2P protocol of communication between two clients, however it specifies only the data
transfer by the already established connection. l.e. to communicate with each other by WebRTC, two
browsers need to be connected some way, for example by opening the same website in the Internet,
that will get them in touch. Connection can also be established by means of a mediator, so called
signalling server.

So there are two clients and a signaling server, that connects these clients, in WebRTC. The process of
establishing P2P connection between the two clients is the exchange of media streams textual
descriptions in SDP format. The signaling server (the mediator) makes it possible to transfer SDP from
one client to the other.

Standard scheme of P2P communication by WebRTC means that there should be two sessions
arranged: audio-video stream from A client to B client, and vice versa b from B to A.

Flussonic Media Server can be the signaling server and the client at the same time, both getting and
sending the video stream. Therefore here we may talk of video publishing on Flussonic Media Server
by WebRTC and of video play by WebRTC.

Playing from Flussonic Media Server by WebRTC

To initiate the WebRTC connection with Flussonic one should open WebSocket connection with
Flussonic by the following address:

ws://flussonic-ip/STREAMNAME/webrtc

where flussonic-ip is an example of your Flussonic Media Server address and port. Ws and wss
protocols are supported.

The result of SDP exchange by means of the signaling server should be a local PeerConnection object
with LocalDescription and RemoteDescription given properties, that contains the local and the remote
SDP description accordingly.

So one should create PeerConnection and set onicecandidate handler. After WebSocket connection is
established, the server will send SDP offer to the WebSocket, and this offer needs to be processed on
the client (it should be set as RemoteDescription for the previously created PeerConnection), and the
SDP answer should be sent.

Also it is necessary to specify the generated answer as LocalDescription for PeerConnection object.

functionEopenWebSocketConnection(options)E{
EEvarEurlE=

EEEoptions.protocolE+E"://"E+
EEEoptions.serverE+E""E+
EEEoptions.portE+E"/"E+
EEEoptions.streamE+E"/webrtc";

m mp my My

FEwebsocketE=EnewEWebSocket(url);
EEwebsocket.onopenE=EinitPeerConnection;
EEwebsocket.onmessageE=EonWebSocketMessage;
}

page 55 from 235



functionEinitPeerConnection()E{
EEpeerConnectionE=EnewEwindow.RTCPeerConnection(null);
EEpeerConnection.stream_idE=E"remotel";

|'|'|)

EpeerConnection.onicecandidateE=EgoticeCandidate;
EEpeerConnection.ontrackE=EgotRemoteTrack;
}

functionEsendWebSocketMessage(data)E{
EEwebsocket.send(JSON.stringify(data));
}

functionEonWebSocketMessage(event)E{
EEvarEmessageE=EJSON.parse(event.data);

EEswitchE(message.type)E{

>
m»
>
>

caseE' offer

EEEEEEEE)):
EEEEbreak;

EEEEcaseE"candldate"

EEEEEEpeerConnectlon.addIceCandldate(candldate),

EEEbreak;
E}

-~ m

In onicecandidate handler of PeerConnection object it is required to implement IceCandidate message
sending to the open Web Socket. After that Flussonic returns via the WebSocket the message, that
contains IceCandidate SDP, which we use to set the direct connection via PeerConnection object. At
this stage we can be sure, that both sides know each otherOs SDP and the direct connection can be
initiated.

functionEgotlceCandidate(event){

EEvarEcandidateE=Eevent.candidate;

EEifE (candidate)E{

EEEEsendWebSocketMessage({

EEEEEEcandidate:Ecandidate

page 56 from 235



To get video from the server one needs to describe ontrack handler of PeerConnection object. It is
necessary to create Video Media Element in advance using Video tag and set srcObject property in
ontrack handler.

functionEgotRemoteTrack(event){
EEifE (event.track.kindE===E"video")E{

EEEvideo.srcObjectE=Eevent.streams][0];
E}

>~ m

After the direct P2P connection is established, the server will start sending video, and this video can be
seen in HTML5 Video tag.

The complete code of the example can be found here.

page 57 from 235



Playing H.265

H.265 (High Efficiency Video Compression N HEVC) is a new video compression format that gradually
comes to replace H.264. Reducing the file size compared to the previous H.264 standard can reach 25-
50%. At this image quality remains high. Supports frame formats up to 8K (UHDTV) with a resolution

of 8192 $ 4320 pixels.

Instead of macroblocks that were used in H.264, blocks with a tree-like encoding structure are used in
HEVC. Winning the HEVC encoder in the application of larger blocks. The use of such blocks increases
the efficiency of encoding while reducing the decoding time.

H.265 is a solution for screen sizes higher than FullHD and is supported on various encoders:
software, GPU (Nvidia NVENC, Intel Quick Sync), hardware.

H.265 can be found on satellite TV and IP cameras.

H.265 support in browsers

Important! Of the browsers to show H.265 now can only Microsoft Edge (version 16 and later) and
Safari (version 11 and later). From mobile browsers N Safari and Chrome for iOS (version 11.0 and
later).

InternetExplorer  Microsoft Edge  MozillaFirefox GoogleChrome Safari iOSSafari
OperaMini  ChromeforAndroid UC BrowserforAndroid = Samsunglinternet + + - -+
+ - - - -

On smartphones, at the moment H.265 is likely to be played on the processor, thus heavily loading the
battery of the device.

H.265 also plays on set-top boxes and SmartTV.

H.265 support in protocols

In the HLS protocol, the H.265 format has been maintained for a long time.
In the MPEG-TS protocol, the H.265 format is supported.

In the RTSP protocol, the H.265 is supported. There is packaging in both SDP and RTP. Remains an
old nuance with the transfer of bframes to RTSP, but this is a separate problem.

H.265 support in players

The latest versions of VLC Media Player have built-in support for the H.265 format.

page 58 from 235



Transcoder

Transcoding is necessary to create a multi-bitrate stream, or to change the codec, the bitrate of the
stream, the size of the image and the overlay of the logo.

Flussonic Media Server has a built-in transcoder.

Content:

Installation
Configuration
Examples of setting stream parameters
Options
Hardware transcoding
Add logo
Preset option
The following protocols are supported: RTMP, RTSP, MPEG-TS (HTTP and UDP).

The HLS protocol is partially supported - some sources may fail to be transcoded. Efficiency of
transcoding of an HLS source should be tested for each individual source.

Important!

Transcoding is an extremely resource-intensive CPU-based process and it includes the following steps:

Decoding of the source stream.
Processing and coding of the raw stream according to the specified parameters.

Depending on the configuration, the number of channels per server may vary between 5 and 20.

Installation

Install the flussonic-ffmpeg package from the same repository as the flussonic package.

apt-getE-yEinstallEflussonic-ffmpeg

Configuration
In the config file /etc/flussonic/flussonic.conf

The transcoder is set as a text string in the configuration file /etc/flussonic/flussonic.conf or in the
administrative interface.

Important! Please note that to activate the transcoder it is important to follow the sequence of
options. First, you specify all video parameters, then global options, and then audio options. In the
examples below, we show the correct layout of options.

The transcoder for the incoming stream in the /etc/flussonic/flussonic.conf configuration file is
included as follows:

streamEortE{
EEurlEEudp://239.0.0.1:5000;
EEtranscoderEvb=2048kEsize=1280x720Epreset=fastEab=128k;

page 59 from 235



}

Do not forget to apply new configuration via command: /etc/init.d/flussonic reload

In the administrator interface

To enable the transcoder via the Flussonic Media Server administrative interface:

In the CMediaE menu, select the channel you want to set up transcoding.
Go to the CProcessE tab.

In the COption for transcodingE line enter the options in the format like this vb=2048k size=1280x720
preset=fast ab=128k

Click CSaveE.

Examples of stream transcoding parameters

Example of settings one stream:
vb=2048kEpreset=fastEab=128k

Examples of configuring multi-bitrate stream parameters:

Example:
vb=2048kEpreset=fastEvb=700kEsize=720x576Epreset=fastEvb=300kEsize=320x240E preset=fastEab=128k

Example:
vb=copyEvb=1600kEsize=1280x720Epreset=fastEvb=400kEsize=640x480Epreset=fastEab=copy

Options
Video options:
vb

vb N (video bitrate) N parameter that specifies the video bitrate track. It is specified as a numerical
value (1000k, 1500k, 2000k, etc). The value must always end with k. Each vb option creates a new
video track in the output stream.

Example:
vb=2048kEab=128k

The option vb=copy saves the parameters of the original stream, that is, it is simply copied to the
outgoing stream.

preset

preset N same as encoder preset in ffmpeg. Affects the quality and download speed. Indicated
separately for each video stream. The default is medium.

Example:
vb=2048KkEpreset=fastEab=128k

Read more about presets below.

page 60 from 235



size

size N video size. Indicated separately for each video stream.

Example:
vh=2048kEsize=1280x720Eab=128k

logo

logo N allows you to overlay the logo.
Example:
vb=2048kEpreset=fastElogo=/path/to/file.png@10:10Eab=128k;

Learn more about the logo overlay settings below.

vcodec

vcodec N allows you to set the video codec. Default value is H.264. Flussonic Media Server allows you
to encode in H.265 (hevc) or mp2v.
mp2v codec is not available with hardware transcoding.
hevc codec is not available with hardware transcoding using Intel QuickSync (hw=gsv).
Indicated separately for each video stream.
Example:
vb=2014kEvcodec=mp2vEab=128k

fps

fps N frame rate. Indicated separately for each video stream.

Example:
vh=2048kEfps=25Eab=128k

deinterlace

deinterlace N activate deinterlacing. Deinterlacing is necessary for comfortable viewing of TV on PC /
mobile devices. It is specified once and acts immediately on all video streams.

Example:
vb=2000kEdeinterlace=1Eab=128k

refs

refs N number of reference frames. Indicated separately for each video stream.

Example:
vb=2000kErefs=6Eab=128k

bframes

bframes N disable b-frames. This may be necessary, for example, when broadcasting to RTSP.
Indicated separately for each video stream.

Example:

page 61 from 235



vb=2000kEbframes=0Eab=128k
hw

hw N enable hardware transcoding. Indicated separately for each video stream.

Example:
vb=2048kEhw=nvencEab=128k

crop

crop N crop video. Available only with hardware transcoding: hw=nvenc. Indicated separately for each
video stream.

Usage: crop = x: y: width: height:
x:y N is the coordinates of the upper-left corner of the output video within the input video.
width N output video width.
height N height of the output video.

Example:
vb=2048kEhw=nvencEcrop=0:0:100:100Eab=128k

aspect

aspect N modifies video aspect ratio. Specify this setting separately for each video stream.
Important! Aspect ratio modification is not compatible with the hw=qgsv option at this moment.

Example:
vb=2048kEhw=nvencEaspect=12:5Eab=128k

force_original_aspect _ratio

force_original_aspect_ratio=true N keeps an original video aspect rate by adding black pads. This
option is useful when you want to keep output resolution while switching between sources with
different parameters.

Example:
vb=2048kEsize=1280x720Eforce_original_aspect_ratio=true

g

g=150 N sets the number of frames in a GOP. The encoder will create all GOPs of an exactly identical
size N as specified in this option.

Example:
vb=2048kEfps=25Esize=1280x720Eg=150

If you use encoding on CPU, you can use the disable_cgop option in addition to this option. It allows
the transcoder to vary the GOP size slightly.

disable_cgop

disable_cgop=1 N allows an open GOP, meaning that the transcoder will divide an output stream into

GOPs with slightly different number of frames, but close to the number specified in g. This option
applies only to encoding on CPU (by contrast to hardware transcoders) and it might help to reduce

page 62 from 235



traffic a little bit.

Example:
vb=2048kEfps=25Esize=1280x720Eg=150Edisable_cgop=1

Any ffmpeg options for video

For example -profile:v high -level 4.1 in Flussonic config would look as follows: profile=high level=4.1.

Audio options:

ab

ab N audio bitrate. Specify it only once, even if there are several audio tracks. The value must always
end with k.

Example:
vb=2048kEab=128k

acodec

acodec N audio codec. Accepts the following values: ac3, mp2a. By default all audio tracks are
encoded with AAC.

Example:
vb=2014kEvcodec=mp2vEab=128kEacodec=mp2a

ar

ar N sample rate.
Example:
vb=2014kEab=128kEar=44100

ac

ac N the number of audio channels.
Example:
vb=2014kEab=128kEac=1

Hardware transcoding

You can seriously increase the number of transcoded streams on the server by using a hardware
transcoder.

Flussonic Media Server supports Nvidia NVENC and Intel Quick Sync Video.

Read more about hardware transcoder here.

Add logo

Flussonic Media Server can add a logo to the video:

Example:

page 63 from 235



vb=2048kEpreset=fastElogo=/path/to/file.png@10:10Eab=128k

10:10 are coordinates of the top left corner of the screen. To place a logo in another part of the screen
a slightly more complex formula should be written. To place logo in the center:

vb=2048kEpreset=fastElogo=/path/to/file.png@(main_w-overlay_w-10)/2:(main_h-overlay_h-10)/2Eab=128k

To place logo in the bottom left corner:
vb=2048kE preset=fastElogo=/path/to/file.png@10:(main_h-overlay_h-10)Eab=128k

To place logo in the top right corner:
vb=2048kEpreset=fastElogo=/path/to/file.png@(main_w-overlay w-10):10Eab=128k

To place logo in the bottom right corner:
vb=2048kEpreset=fastElogo=/path/to/file.png@(main_w-overlay_w-10):(main_h-overlay_h-10)Eab=128k

Important! Flussonic Media Server can add logo with CPU and NVENC encoders.

Preset option

Preset - is a collection of options that will provide a certain encoding speed to compression ratio. A
slower preset will provide better compression (compression is quality per filesize). This means that,
for example, if you target a certain file size or constant bit rate, you will achieve better quality with a
slower preset. Similarly, for constant quality encoding, you will simply save bitrate by choosing a
slower preset.

Use the slowest preset that you have patience for. There are following values: ultrafast, superfast,

veryfast, faster, fast, medium, slow, slower, veryslow, placebo. Default value is medium.

placebo is not very helpfull, ignore it.

page 64 from 235



Hardware transcoding

Transcoding video using Nvenc

Flussonic Media Server is able to encode video using the GPU on Nvidia graphics cards. The list of
supported cards can be found at nvidia site.

Also the Nvidia driver version at least 352 must be installed.
Install the driver from the package.

Driver Installation

Ubuntu 16.04:
apt-getEinstallEnvidia-375

Debian 9:

apt-getEinstallEnvidia-driverElibnvidia-encodel

non-free component must be enabled in sourses.list.
On other systems, install driver from the Nvidia site. Installation process description for Debian.

To work with a lot of transcoder processes (more than 40), you'll need to increase the OS limit for
open files: ulimit -n 4096.

Add these lines to /etc/security/limits.conf file:

*EhardEnofileE4096
*EhardEnofileE4096

Enabling the transcoder

You can configure transcoding:

In the Flussonic configuration file /etc/flussonic/flussonic.conf in a stream settings, using the
directive transcoder with various options.

In the administrator Ul in Media > click a stream > Process > Transcoder. The word transcoder is not
needed here.

Add hw=nvenc flag to turn on Nvenc:
transcoderEvb=2048kEhw=nvencEab=128k

Selecting a codec

The default is H.264. For encoding on Nvenc you can use H.265 (HEVC):
transcoderEvb=2048kEhw=nvencEvcodec=hevcEab=128k

Selecting the video card

If the system has multiple graphics cards, you can choose which one to use with deviceid=N option:
transcoderEvb=2048kEhw=nvencEdeviceid=2Eab=128k

The number of the card can be retrieved with the command nvidia-smi.

The first card used by default deviceid=0.

page 65 from 235



Trimming a video

For Nvenc available crop=left:right:width:heigt option, allows to crop video:
transcoderEvb=2048kEhw=nvencEcrop=0:0:100:100Eab=128

Decoding

Decoding performed on GPU by default. To use processor for decoding, specify hw=nvencz2 instead:
transcoderEvb=2048kEhw=nvenc2Eab=128k

Deinterlacing

Deinterlace performed by default when using nvenc. In nvenc2 case deinterlace has to be turned on
explicitly with deinterlace=yes parameter.

To disable resource-consuming deinterlacing, specify deinterlace=0 on nvidia transcoding.

Other parameters, such as size, preset, bframes, level are used just as in CPU transcoder. preset
parameter can have one of these values: hq, hp, bd, II, llhqg, llhp. hp used by default.

Transcoding video using Intel” QuickSync

You need to have Intel” Media SDK installed on the server.

Add hw=qgsv flag to turn on QuickSync:
transcoderEvb=2048kEhw=qsvEab=128k

How many streams can be transcoded on a single video card?

GeForce series video cards, as a rule, have a limitation in the number of simultaneously encoded
streams equal to two. Professional lines QUADRO and TESLA do not have such restrictions, however,
the maximum number of transcoded streams depends on many factors, including the quality of input
and output streams (bitrate, video resolution, frames per second, etc.), as well as the hardware
resources of the server.

When choosing a video card model, use the nvidia comparison table

page 66 from 235



Thumbnails

Video is a stream of pictures. Sometimes you need to extract these pictures and handle them
separately from each other. This is called thumbnails or screenshots.

Flussonic Media Server can make thumbnails of a video stream. They allows you to:

show an instant preview of a live stream on a web page to know what is happening there right now;
take a look at the quality of a stream;

freeze a point in time to use the screenshot somewhere else;

make a fast search in the DVR archive for some fragment of video identifiable by the screenshot;
create a wall of screenshots to quickly look at a whole day of recording;

do whatever else you want with small static images extracted from a large video stream.

Flussonic Media Server can create thumbnails in two fundamentally different ways:

Extracting video frames as JPEG images. It can save them in the DVR archive. Read about it on this
page.
Creating MP4 video thumbnails (a cool new feature):

In H.264 streams with keyframes, compressed images are already available. Flussonic Media Server
takes the first keyframe from each segment and displays it as a video consisting of one frame. Read
more in Video thumbnails.

About JPEG thumbnails

Flussonic Media Server does a rather CPU-intensive job: it takes the first keyframe of each segment,
decodes it to raw video, and encodes back to a JPEG image. Looks rather simple, but when you have
300 streams it takes a lot of CPU time.

Flussonic allows some optimization here B by changing a segment duration you can change the total
number of JPEG thumbnails. The fact that Flussonic Media Server takes only the first keyframe of a
segment means that if you configure the segment duration of 3 seconds, you have 20 JPEGs per
minute. If you configure it 6 seconds, you have 10 JPEGs per minute. If you take a stream from an IP
camera, you may have 60 keyframes per minute, but Flussonic Media Server will create a smaller
number of JPEGs.

Note. When you enable DVR on a stream, all these JPEGs are written on the disk.

It is possible to optimize the CPU usage by accessing thumbnails by their URL. Usually it is suitable for
IP cameras because IP camera maintain fresh JPEG screenshot for the currently shown video. In this
case Flussonic Media Server will download a JPEG image each time video segment starts.

Configuring JPEG thumbnails generation

Flussonic Media Server can make JPEG from video by using the package flussonic-ffmpeg that you will
need to install like below:

apt-getE-yEinstallEflussonic-ffmpeg

page 67 from 235



Jetc/init.d/flussonicErestart

Then add the thumbnails option to the stream settings:

streamEortE{
EEurlEudp://239.255.0.100:1234;
EEthumbnails;

}

This will start the additional process flussonic-thumbnailer, and you can see from the server console
that it can be rather hungry for resources. Sorry, but this is the nature of video and image
compression.

All settings can be specified through the administrator's panel in a stream's settings on the Process
tab.

Configuring JPEG thumbnails generation from URLSs

To reduce CPU usage on thumbnail generating, you can specify the URL where Flussonic Media Server
can get thumbnails. Many cameras have a special URL for screenshots:

streamEcamOE{
EEurlErtsp://10.0.4.3:554/h264;
EEthumbnailsEurl=http://10.0.4.3/cgi-bin/snapshot.cgi

—

You can try to find the URL for screenshots in documentation for your camera model, or you will need
to look in the internet for this.

Getting JPEGs from live streams

After you have enabled thumbnails in Flussonic Media Server, you need to access them.

The URL for getting thumbnails is as follows:
http://flussonic:8080/ort/preview.jpg N a stream's last screenshot.
http://flussonic:8080/ort/preview.mjpeg N an MJPEG screenshot stream.

We strongly recommend that you never use MJPEG because it is an uncontrollable way of streaming
video with a very high bitrate. You can get up to 50% of original bitrate for video with 0.1fps. But if you
still need it, you can use it.

Getting JPEGs from DVR by GMT time
Screenshots are automatically saved to the archive if DVR is turned on for the stream. They can be
obtained via HTTP API.

The best way (in terms of resources) of getting JPEG screenshots is to specify an approximate GMT
time as part of the URL. Flussonic will return the URL corresponding to the nearest keyframe (an
actual screenshot).

curlE-vE'http://192.168.2.3:8080/0rt/2018/05/02/06/59/38.jpg'

YouEthenEuseEthisEURLEtoEaccessEtheEscreenshot.E

page 68 from 235



LearnEmoreEinEDVREAPI,EsectionERequestingEJPEGEscreenshots.

Getting JPEGs from DVR by UTC time

Important! This method is resource-intensive, we don't recommend using it. A better way is to use an
approximate GMT time. Learn more in DVR API, section Requesting JPEG screenshots.

First, you need to identify a time range for which you want to get DVR. For example, right now it is
2017 April 21, 13:10 GMT, so it is 1492780200 UTC. If you want to get thumbnails for the last hour,
you need to request the following URL:

curlE'http://flussonic:8080/clock/recording_status.json?from=1492776600&t0=1492780200&request=brief_th
umbnails'

By default, Flussonic does not include the list of timestamps in the response. To get them, we added
request=brief_thumbnails to the query string.
The response can be like this:

[{"stream":"clock”,"ranges":[{"duration":3642,"from":1492776599}],"brief_thumbnails":[1492776599,14927
76605,
1492776617,1492776629,1492776641,1492776653,1492776665,1492776677,1492776689,1492776701,14
92776713,1492776725,

Sl

Here you get a very long list of timestamps that you need to convert to paths to screenshots. For
example, the timestamp 1492776605 will be converted to
http://flussonic:8080/clock/2017/04/21/12/10/05.jpg.

So first you get a list of timestamps and then you get thumbnails by calculated URLSs.

Ondemand JPEG generation

Sometimes it is very expensive to store all JPEG images on the disk, so you can ask Flussonic Media
Server to generate JPEGs on demand. In this case, you don't need to enable thumbnail generation in
the stream settings.

Request a URL with a certain time:
http://flussonic:8080/clock/2017/04/21/12/10/05-preview.jpg

and Flussonic Media Server will take a segment, take the first keyframe and generate a JPEG image
from it.

This method might lead to unpredictable CPU usage, so it is basically not recommended.

Unpredictable here means that it is really hard to predict. With enabled JPEG thumbnailer you have
smooth and moderate CPU usage, but not more. With ondemand JPEG you may have low CPU usage,
but during prime time you can get spike and your server may become unstable.

page 69 from 235



Mosaic

Merge streams in mosaic

Flussonic has builtin mosaic module: you can merge several streams into one mosaic.

Install flussonic-ffmpeg package and make following configuration:

streamEcam1E{
EEurlErtspi/l...;

}

streamEcam?2E{
EEurlErtspi//...;

}

streamEcam3E{
EEurlErtsp:/l...;

}

streamEcam4E{
EEurlErtspi/l...;

}
streamEmosaic0E{
EEurlEmosaic://cam1,cam2,cam3,cam4?fps=20&preset=ultrafast&bitrate=1024k&size=340x240&mosaic_size
=16;

}

After specifying pseudo-url mosaic:// you need to enter stream names separated by comma.

Option fps=20 specifies frame per second for video. You can use fps=video for binding fps of mosaic
of the first stream.

Option size=320x240 reduces size of each stream in mosaic.

Option mosaic_size tells how many slots should be in mosaic.

page 70 from 235



VODEfile broadcasting

Content:

Containers and codecs

Server settings

Managing files via the web interface
Embedding the player to a webpage
Using files

Playing the file from the Admin Panel
Using multiple catalogs

VOD settings

Multi-language streaming

Exporting subtitle track as SRT
Adaptive streaming (multi-bitrate)
Preparing files for broadcasting (transcoding)

Containers and codecs

Flussonic Media Server is able to deliver video from files in MP4 and FLV containers with H264, HEVC,
FLV video and AAC, MP3, AC3, PCMA, PCMU audio codecs.

Container Video Audio

Flash Video B FLV (.flv) H.264, VP6, H.263 MP3, AAC (all profiles), Nellymoser ASAO, Speex
MP4 (.mp4, .f4v, .mov, .m4v, .mp4a, .3gp, .392) H.264, H.265 MP3, AAC (all profiles)

MPEG-TS files H.264, MPEG2 Video, HEVC (H.265) AAC (all profiles), AC-3 (A/52), MP3, MPEG2
Audio

Server settings

In order to broadcast content of files from subdirectory
/movies
, choose a arbitrary, unique prefix and add the following line to the configuration

/etc/flussonic/flussonic.conf

fileEvodE{
EEpathE/movies;
}

page 71 from 235



File broadcasting can be also configured via the web interface. To this end, create a VOD Location in
the media list:

From now on, files will be served with the prefix vod via the protocols HLS, HDS, RTMP, RTSP.

Note that for one file prefix multiple sources can be specified, cloud storage. More detail on setting up
multiple paths for one prefix.

Managing files via the web interface

Flussonic Media Server has a full-fledged built-in file manager, which enables the user admin to load
and view files on the local disk as well as those stored in the cloud.

After adding the file prefix in the config or in the web interface, go to the VOD tab:
Now you can create subfolders:
Once the desired directory is selected, you can upload one or more files to it:

You can view the file in this interface by clicking on it. Placing the mouse cursor over the file name
displays the option to delete the file.

Embedding the player to a webpage

Flussonic Media Server has a special page embed.html which is intended for video insertion to a
website or viewing of video via a browser.

It is available via the link:

http://hostname/vod/bunny.mp4/embed.html

The page automatically detects a browser version to select a supported protocol. For the majority of
devices for today N it's HLS.

Read more in an article CVideo insertion on the website (embed.html)E.

Using files

To play the file on the disk at the path /movies/elementary/s01e02.mp4, specify for players the
following sources:

HDS (StrobeMediaPlayback and other OSMF-based players)
http://erlyvideo:8080/vod/elementary/s01e02.mp4/manifest.f4m

HLS (iOS, Android, STB) http://erlyvideo:8080/vod/elementary/s01e02.mp4/index.m3u8
RTMP (Jwplayer, Flowplayer, Uppod) application: rtmp://erlyvideo/vod, path: elementary/s01e02.mp4

Playing the file from the Admin Panel

Go to the vod file browser page and select a file.

And then you may select a protocol and press "click to play".

Using multiple catalogs

Sometimes, when dealing with high volume of streaming traffic, the admin's best strategy is to use the
available hard drives in the JBOD mode as opposed to RAID. In this case, each hard drive is handles

page 72 from 235



separately in the system and mounts to a separate catalog.

It is possible to specify to Flussonic Media Server a common file zone for multiple catalogs. In this
way, the file can be moved among different devices without changing the URL:

fileEvodE{
EEpathE/mount/disk1;
EEpathE/mount/disk2
}

VOD settings

These settings are for use in the file directive. We call them options.

file

file vod {EEpath /storage;} = Complete version of the location for file playback.
cache
cache /ssd misses=5 2d 40G; All requests for files will be cached in the /ssd folder for no longer than

2 days, with the size limit of 40GB. The caching feature will turn on when one file gets more than 5
uncached requests.

domain

domain host.com; Specifies the domains where the video can be played. This does not work for
those clients that do not pass the value of Referer.

domains

domains hostl.com *.host2.com; Specifies the domains where the video can be played. This does
not work for those clients that do not pass the value of Referer.

path

path /storage; path s3://key:secret@s3.amazonaws.com/bucket/;  Specifies file search path. You can
specify multiple search paths.

read_queue

read_queue 100; The number of simultaneous requests to disk for a given prefix.

download

download; Enables downloading the file and Range requests for it.

max_readers

max_readers 10;  Specifies the max number of simultaneous disk requests to the entire prefix.

thumbnails

thumbnails offset=10;  Turns on poster generation with optional offset time in seconds. The
flussonic-ffmpeg package must be installed.

page 73 from 235



Multi-language streaming

The HLS and HDS protocols allow language switching. Flussonic Media Server automatically enables
this option, if you simply add extra language tracks to the mp4 file.

By the same token, add subtitles in the tx3g format as tracks to the mp4 file to turn on the subtitles
feature.

Exporting subtitle track as SRT

Flussonic Media Server can serve subtitle tracks within mp4 as SRT, which with some Flash players is a
requirement:

http://192.168.2.3:8080/vod/video.mp4/track-t1.srt

Adaptive streaming (multi-bitrate)

To make sure that users with different network speed have good viewing experience, adaptive
streaming can be used. In order to set up adaptive streaming, you will need to create a multi-bitrate
mp4 file and request a manifest file for it. Flussonic will do the rest. The file encoding section gives a
detailed instruction on creating multi-bitrate files.

Preparing files for broadcasting (transcoding)

See below for the basic example of creating a multi-bitrate file using ffmpeg

ffmpegE-iEbunny.mp4E\
-mapE0:0E-c:vEcopyE\
-mapE0:0E-c:vElibx264E-b:vE150kEE\
-mapE0:0E-c:vElibx264E-b:vE100kE\
-mapE0:1E-c:vElibx264E-b:vES0KE\
-mapEO0:1E-c:aEcopyE\
-mapEO0:1E-c:aEcopyE\

-yEout.mp4

This process is discussed in more detail under the section "Preparation for broadcasting".

page 74 from 235



Cache

To speed up the broadcasting of VOD, you can use the SSD cache.
To configure caching, for original files from the cloud or HTTP server the cache option is used.

For files on SSD drives, you need to use intermediate SSD caching of video file segments, and the
option for this is segment_cache.

File caching on SSD

You can ask Flussonic Media Server to save not chunks, but file content on disk, when the source is a
cloud or a remote HTTP server (such as another Flussonic).

This mechanism can allow you to build a distributed CDN from several Flussonics because now even
downloading will lead to caching a whole file.

Flussonic Media Server will not download the same content twice, so simultaneous access to a file is
collapsed into single upstream request.

Here is configuration for file cache:

fileEvodE{

EEpathEhttp://big-central-origin.mycdn.tv/vod:;

EEcacheE/mount/ssdE400G;

EEdownload:;
}

Such configuration will download files on /mount/ssd on request: only required data will be available
locally.

Caching based on the number of requests

You can define a condition for placing files in cache N this condition is how often a file was requested
by clients.

The option misses=3 tells Flussonic that if this file was requested more than 3 times, it must be
cached:

fileEvodE{

EEpathEhttp://big-central-origin.mycdn.tv/vod;

EEcacheE/mount/ssdE400GEmisses=3;

EEdownload,;

}

Segment cache for SSD

Today, one of the most popular ways to speed up serving content from a disk is using SSD storage.

Since solid state drives cost significantly higher than traditional HDs, quite often it makes sense to use
the setup that involves intermediate SSD caching.

Flussonic Media Server can automatically cache the requested chunks for HLS and HDS on a disk,
which allows to speed up delivery considerably. Specify the following configuration:

fileEvodE{

page 75 from 235



EEEEpathsE/mount/hdd1E/mount/hdd2E/mount/hdd3;
EEEEsegment_cacheE/mount/ssd1E20GE48hEmisses=2;
}

With this configuration, Flussonic Media Server maintains the cache size limit of 20GB, deletes files
older than 2 days, and caches only the files requested more than twice.

Important! Prior to 4.6.14, this directive was named cache and you could specify a reference to the
global cache directive.

Important! We do not recommend using segment_cache for traditional HD drives!

page 76 from 235



VOD from cloud

Flussonic Media Server can broadcast video files kept in a cloud storage such as Amazon S3 or
OpensStack Swift, as well as at HTTP servers.

Broadcasting from HTTP server

fileEhttpE{
EEpathEhttp://storage/prefix;
}

You can pass parameters in the query string. This might be necessary if the server checks for any
parameter in the query string. For example:

fileEhttpE{
EEpathEhttp://storage/prefix?key=12345;
}

When accessing a file, for example, vod/bunny.mp4, Flussonic Media Server rewrites the query to
http://storage/prefix/bunny.mp4?key=12345.

Broadcasting from Amazon S3

ACCESS_KEY and SECRET_KEY are the keys that can be obtained from your Amazon AWS profile.

fileEpublicE{
EEpathEhttp://s3.amazonaws.com/publicbucket;

}

fileEprivateE{
EEpathEs3://ACCESS_KEY:SECRET_KEY@s3.amazonaws.com/privatebucket;
}

Broadcasting from the Swift storage

fileEswiftE{
EEpathEswift://luser=USER&password=PASSWORD&region=1@swift-proxy/bucket;
}

page 77 from 235



Transcode files

Adaptive bitrate streaming ensures good viewing experience for users with different connection
speeds. In order to set up adaptive streaming, you will need to create a multi-bitrate MP4 file and
request a manifest file for it. Flussonic will do the rest.

See below for detailed instructions on adaptive streaming setup and multi-bitrate file creation.

Installing utilities

You will need to have ffmpeg and codecs installed. The installation process differs from OS to OS.

Installation instructions under Windows

First, download ffmpeg from http://ffmpeg.zeranoe.com/builds/ and unpack, for instance, to
C:\ffmpeg. Next, add new directories (in our example, C:\ffmpeg and C:\ffmpeg\bin) to the system
path.

In Windows 8.1, press Windows+Pause, click Advanced system settings, push the Environment
Variables button, then in the System Variables pane find the Path line and insert
%:\ffmpeg;%:\ffmpeg\bin; at the beginning of the value.

Then download and install K-Lite Mega Codec Pack: http://www.codecguide.com/download_k-
lite_codec_pack _mega.htm Once the installer launches, select the fullest complete installation option
("Lots of stuff").

Installation instructions under Ubuntu Linux

We recommend to use pre-built ffmpeg from this site: http://johnvansickle.com/ffmpeg Or any other
pre-built binary from the official web site: https://www.ffmpeg.org/download.html

We don't recommend ffmpeg from your Linux distro, because usually it's too old for transconding
h264, or too old to work with our guides (or any other guides that rely on modern ffmpegs), or there is
still some other trouble.

Once the codecs installation is complete, your computer is ready to encode video.

Constructing a ffmpeg command

Let's say you have a video file h.m4v with two audio tracks (English and Russian) and two sets of
subtitles (also English and Russian).
First you need to find out what streams the file contains. To this end, type in the console:

ffmpegE-iEh.m4v

You will get a screenful of text, but the part you are looking for is this:
EStreamE#0:0(eng):EVideo:Eh264E(ConstrainedEBaseline)E(avc1E/E0x31637661),Eyuv420p,E640x360E[SARE1331:

page 78 from 235



1000EDARE2662:1125],E1800Ekb/s,E23.98Efps,E23.98Etbr,E25kEtbn,E180kEthc
EEEEMetadata:

EEEEStreamE#0:1(rus):EAudio:EaacE(mp4aE/E0x6134706D),E48000EHz, Estereo,Es16,E127Ekb/s
EEEEMetadata:

EEEEEEhandler_nameEEEE:
EEEEStreamE#0:2(eng):EAudio:EaacE(mp4aE/E0x6134706D),E48000EHz,Estereo,Es16,E127Ekb/s
EEEEMetadata:

EEEEStreamE#0:3(rus):ESubtitle:Emov_textE(tx3gE/E0x67337874)
EEEEMetadata:

EEEEEEhandler_nameEEEE:
EEEEStreamE#0:4(eng):ESubtitle:Emov_textE(tx3gE/E0x67337874)

EEEEMetadata:

Each stream section displays a stream number (0:0,0:1,0:2,0:3,0:4), stream type (video, audio,
subtitles) and language (in our example, eng and rus).

The file you will create will have the same stream structure with more video streams. Let's say the
video file you need should have 3 different video quality options to choose from.

3 video streams + 2 audio streams + 2 subtitle streams = 7 streams total.
Now, let's construct the command for ffmpeg.

The first line would be:

ffmpegE-iE"/home/olegchir/temp/h.m4v"E\

Note the \ symbol. Under Linux, this is line feed. In Windows, the * symbol is used, so the line should
look like this:

ffmpegE-iE"/home/olegchir/temp/h.m4v"EX

This entire line means that you are going to convert the file found at the address specified after the -i
key.

Next, you must export the streams to the resulting video file. The 0:0 stream needs to be converted to
3 video streams of different quality. The code to enter is: -map 0:0 -map 0:0 -map 0:0 - that is, you are
taking the 0:0 stream three times. Each of the remaining streams (0:1, 0:2, 0:3, 0:4) simply needs to be
copied over once. So enter the following: -map 0:1 -map 0:2 -map 0:3 -map 0:4.

Together the first two lines should look like this:

ffmpegE-iE"/home/olegchir/temp/h.m4v"E\
-mapE0:0E-mapE0:0E-mapE0:0E-mapE0:1E-mapE0:2E-mapE0:3E-mapE0:4E\

Next, you'll need to take care of encoding.

page 79 from 235



Important: While within the original file all streams of different types have similar designations (video
and audio are parts of the same set), further on each stream type has its own ordinal sequence
starting from 0. That is, the first video stream is designated as v:0, and the second audio would be a:1.

-C:v:0 libx264 -b:v:0 1800k -metadata:s:v:0 language=eng \ - takes the first video stream, encodes it as
x264 with the bitrate as on the source file and marks its language as English.

-c:v:1 libx264 -b:v:1 150k -metadata:s:v:1 language=eng \ - takes the first video stream, encodes as
X264 with the bitrate 150k, marks its language as English.

-c:v:2 libx264 -b:v:2 100k -metadata:s:v:2 language=eng \ - the same as the previous but with the
bitrate 100Kk.

You must re-encode not only additional tracks but also the original track. That will make them synched
and having an identical GOP structure, which is essential for adaptive streaming.

If you put copy on the 2nd position (after specifying the stream), no encoding is taking place and the
stream gets copied over as is.

These commands copy all audio and video without changes:

-c:a:0EcopyE-metadata:s:a:0Elanguage=rusE\
-c:a:1EcopyE-metadata:s:a:1Elanguage=engE\
-c:s:0EcopyE-metadata:s:s:0Elanguage=rusE\
-c:s:1EcopyE-metadata:s:s:1Elanguage=engE\

Your command should look like this:

ffmpegE-iE"/home/olegchir/temp/h.m4v"E\
-mapE0:0E-mapE0:0E-mapE0:0E-mapE0:1E-mapE0:2E-mapE0:3E-mapE0:4E\
-c:v:0Elibx264E-b:v:0E1800kE-metadata:s:v:0Elanguage=engE\
-c:v:1Elibx264E-b:v:1E150kE-metadata:s:v:1Elanguage=engE\
-c:v:2Elibx264E-b:v:2E100kE-metadata:s:v:2Elanguage=engE\
-c:a:0EcopyE-metadata:s:a:0Elanguage=rusE\
-c:a:1EcopyE-metadata:s:a:1Elanguage=engE\
-c:s:0EcopyE-metadata:s:s:0Elanguage=rusE\
-c:s:1EcopyE-metadata:s:s:1Elanguage=engE\

Now specify the synchronization options and the target file to write the encoded video to:
-asyncE1E-vsyncE1E\
"/home/olegchir/temp/h2.m4v"

All together, the command should look like this:

ffmpegE-iE"/home/olegchir/temp/h.m4v"E\
-mapE0:0E-mapE0:0E-mapE0:0E-mapE0:1E-mapE0:2E-mapE0:3E-mapE0:4E\
-c:v:0Elibx264E-b:v:0E1800kE-metadata:s:v:0Elanguage=engE\
-c:v:1Elibx264E-b:v:1E150kE-metadata:s:v:1Elanguage=engE\
-c:v:2Elibx264E-b:v:2E100kE-metadata:s:v:2Elanguage=engE\
-c:a:0EcopyE-metadata:s:a:0Elanguage=rusE\
-c:a:1EcopyE-metadata:s:a:1Elanguage=engE\
-c:s:0EcopyE-metadata:s:s:0Elanguage=rusE\
-c:s:1EcopyE-metadata:s:s:1Elanguage=engE\

-asyncE1E-vsyncE1E\

page 80 from 235



"lhome/olegchir/temp/h2.m4v"

Encoding a video segment

Sometimes you need to encode only a specific segment of your video stream. To this end, the
following parameters are used: -ss 00:00:00 -t 00:05:00. The first number (the value of ss) specifies the
start of the segment in seconds. The second number gives the segment’s duration.

These parameters can be combined with many others. For instance:

ffmpegE-iE"/home/olegchir/temp/h.m4v"E\
-ssE00:00:00E-tE00:05:00E\
-mapE0:0E-mapE0:0E-mapE0:0E-mapE0:1E-mapE0:2E-mapE0:3E-mapE0:4E\
-c:v:0Elibx264E-b:v:0E1800kE-metadata:s:v:0Elanguage=engE\
-c:v:1Elibx264E-b:v:1E150kE-metadata:s:v:1Elanguage=engE\
-c:v:2Elibx264E-b:v:2E100kE-metadata:s:v:2Elanguage=engE\
-c:a:0EcopyE-metadata:s:a:0Elanguage=rusE\
-c:a:1EcopyE-metadata:s:a:1Elanguage=engE\
-c:s:0EcopyE-metadata:s:s:0Elanguage=rusE\
-c:s:1EcopyE-metadata:s:s:1Elanguage=engE\
-asyncE1E-vsyncE1E\

"lhome/olegchir/temp/h2.m4v"

This is the encoding command discussed earlier, but applied only to the first 5 seconds of the video
clip.

Changing resolution for video streams with lowered bitrate

Sometimes you might need to lower the resolution of the video stream along with the bitrate. The
following parameter does this job: -filter:v:3 scale=320:240 It should be added to the stream-specific
line of code the same way as with the bitrate and subtitles in the previous examples.

Let's see in detail what is going on here.

"-filter" means a certain filter is going to be specified, ":v:3" is the number that the video stream will be
designated once it gets new resolution,

"scale" is the name of the filter (ffmpeg supports various filters; this particular one changes
resolution),

"320:240" is the new resolution. Note that if we know the desired width, the height can be specified
simply as -1, i. e., "320:-1". This keeps the ratio automatically.

Now let's see what it looks like in reality. Take the code from the previous examples and add the
fourth video stream ("-c:v:3") with the resolution width 320 ("scale=320:-1"). Now you need to write "-
map 0:0" four times because you have four video streams.

ffmpegE-iE"/home/olegchir/temp/h.m4v"E\

-ssE00:00:00E-tE00:05:00E\
-mapE0:0E-mapE0:0E-mapE0:0E-mapE0:0E-mapE0:1E-mapE0:2E-mapE0:3E-mapE0:4E\
-c:v.0Elibx264E-b:v:0E1800kE-metadata:s:v:0Elanguage=engE\
-c:v:1Elibx264E-b:v:1E150kE-metadata:s:v:1Elanguage=engE\
-c:v:2Elibx264E-b:v:2E100kE-metadata:s:v:2Elanguage=engE\

page 81 from 235



-c:v:3Elibx264E-b:v:3E100kE-metadata:s:v:3Elanguage=engE-filter:v:3Escale=320:-1E\
-c:a:0EcopyE-metadata:s:a:0Elanguage=rusE\
-c:a:1EcopyE-metadata:s:a:1Elanguage=engE\
-c:s:0EcopyE-metadata:s:s:0Elanguage=rusE\
-c:s:1EcopyE-metadata:s:s:1Elanguage=engE\

-asyncE1E-vsyncE1E\

"lhome/olegchir/temp/h2.m4v"

page 82 from 235



Cluster

Cluster is a set of several servers that are connected together to perform some work that cannot be
performed by & single server.

Flussonic Media Server supports different modes for combining servers into cluster.

Please note that there is no such thing as Csimple clusterE, you always need to understand what
exactly you want to achieve by installing several servers: it may be reducing downtime in case of
failure, increasing total service throughput or sharing storage between servers.

Please read this section to get a better idea of how Flussonic Media Server can help you.

Scenarios

Below are a few examples of Flussonic Media Server cluster configuration:
Capture streams on one or several servers and then automatically restream them to another with
instant failover.
Instant access from restreamer to streams published on source.
Remote access to DVR captured on source server.
Capturing and transcoding streams on group of servers with instant automatic failover.

Automatic and managed load balancing clients between servers in group of peers.

Terminology

Here we explain some terminology that can help you not to get lost:

Cluster

A group of servers with Flussonic Media Server installed to work together in the same service.
Source

Flussonic Media Server which already captures (or can start to capture streams Con demandE) and can
be used as a source for restreaming server.

Restreamer
Flussonic Media Server which can receive (or already receives) streams from one or more sources.
Retreaming

Configuration consisting from source and restreaming servers that allows restreaming servers to
automatically receive live streams and DVR captured on source servers.

Peer

Flussonic Media Server which is located nearby another Flussonic Media Server. Only one of them can
capture some stream. It can be useful when capturing the stream on both servers is very expensive,
for example, when the stream is an IP camera connected through an unreliable connection.

Cluster ingest

Configuration of several peer Flussonic Media Servers that ensures that each stream is captured only
once. If one of the peers fails, the other peers will begin to capture its streams.

page 83 from 235



Restreaming

Please read the article about clustered restreaming.

Cluster DVR

Learn about access to DVR in cluster in separate article.

Cluster ingest and transcoding

Find out how to configure transcoding with failover and reliable capture with cluster ingest

Redirect to peers

Flussonic Media Server can route clients to proper peers using cluster peering mechanism.

page 84 from 235



Cluster restreaming

Flussonic Media Server (the restreamer) can connect to another Flussonic Media Server (the source),
take the list of running streams and streams available on-demand, and restream them locally. Also,
Flussonic allows you to transparently access DVR on the source.

You can configure several sources on Flussonic and build a robust highly available cluster
configuration.

Difference from HTTP proxy

Many CDNs offer the solution to the problem of video delivery that means using a cluster of
conventional HTTP proxy servers that cache the segments of an HLS stream and deliver them to a
user.

Compared to a simple HTTP proxy, Flussonic Media Server installed on all servers in a network
provides the following advantages:
you can use not only HLS, but DASH, HDS, RTMP, RTSP, HTTP MPEG-TS, and UDP MPEG-TS;
single user authentication on all available protocols;
centralized aggregation of sessions and collection of statistics.

So the main difference between using a plain HTTP proxy and restreaming via Flussonic Media Server
is that you can transfer video between servers only once and get all Flussonic Media Server
functionality on the restreaming server.

This is not achievable by using a plain HTTP proxy, because it does not work with video on lower level.

Configuration

To enable Flussonic Media Server cluster restreaming, use the following directives:

source N specifies the server from which you want to restream video.
cluster_key N specifies the key for authorization for inter-Flussonic connections.
The source directive has the following syntax and options:

cluster_keyEsamekeyforall;

sourceEorigin1.tvE{

}

sourceEorigin2.tvE{
EEonlyEcbcEfootball;

}

sourceEorigin3.tvE{
EEcluster_keyEanotherkey;
EEexceptEcomedy;

page 85 from 235



}

You need to have the same cluster_key for the source and restreamer. It is important to keep the
cluster key in secret because it can be used for configuring the remote server. It is not transferred as
plaintext, only as hash.

The source directive enables automatic fetching of the list of remote streams from the source server.
You can divide streams into several lists:

white list N these streams will be available as static on the restreamer.

gray list NEthese streams will be available as ondemand on the restreamer.

black list NEthese streams will not be visible on the restreamer.

By default, all running (static) streams from the source server are in the white list on the restreamer,
all ondemand streams on the source are in the gray list on the restreamer.

When you specify the except option, it moves streams to the blacklist (this option has a higher priority
over only).

When you specify the only option, you assign available streams (except those in the black list) to white
and gray lists: only is for the white list, other streams will become ondemand (not static) and will be
awaiting for requests to run.

If there is a local configured or published stream that has the same name as some stream from the
source, then the stream from source will be ignored and only the local configuration will be used.

Extra configuration

You can enable mass configuration for all streams launched via the source:
sourceEorigin1Eorigin2E{
EEsegmentsE10;

EEauthEhttp://backend/auth.php;
EEdvrE/storageE2dE95%;
}

Such configuration is automatically applied to all streams launched on the restreamer.

If you have a configured backup option on the main server, you should upload backup file to the
restreamer and specify it in source:

sourceEoriginE{
EEbackupEvod/bunny.mp4;
}

Multiple sources

It is possible to configure many sources on restreamer. If several sources has the same stream name,
it will mean that one stream will be configured with multiple urls.

This means that if first source goes down or loses stream, restreamer will switch to second source.

When there are several sources with cluster ingest configured, you can make really highly available
cluster configuration.

page 86 from 235



The M4F protocol

For restreaming, Flussonic Media Server by default uses its internal protocol M4F.

This protocol guarantees the following features:

it keeps streams on the source and restreamer highly synchronized;

the same frame timestamps;

the same body;

it doesn't have short timestamp counter as in MPEGTS or RTMP: all timestamps are in UTC;

keeps the same structure of segments when creatring a byte-to-byte copy of the origin stream for all
protocols on the restreamer comparing to the source;

maintains the same segment number on the source and restreamer;

it has the same byte structure as the on-disk DVR format;

it allows sending push notifications to the client from the server about new data;
it maintains on the restreamer information about the source DVR .

So M4F provides high accuracy in time and data sent to the restreamer. It also supports all codecs that
Flussonic works with.

This special protocol M4F has some advantages comparing to HLS or RTMP:

RTMP has only millisecond timestamp precision and it breaks timestamps;

RTMP has only 24 (or 32 bits) for millisecond timer, MPEG-TS gives 33 bits for 90 Khz based timer. It
means that it is hard to synchronize time between source and restreamer;

RTMP and MPEG-TS don't have ways to synchronize stream timing with wallclock time;

RTSP has mechanism to synchronize stream and wallclock time, but it has problems with delivering
b-frames and some codecs;

M4F has enough space to keep wallclock time in 90 khz base, giving high precision absolute timing of
each frame.

page 87 from 235



Cluster ingest

This feature solves the following problem: say, there are a few servers (up to 20), united in a group,
and there are a bunch of streams that need to be ingested, not more than once on each server.

If one server fails, it is necessary to ingest streams on another server automatically.

This feature works as follows: configuration file defines all servers involved in ingesting, cluster
authorization should be enabled:

cluster_keyEMYSECRET;

peerEs01.myhosting.com;
peerEs02.myhosting.com;
peerEs03.myhosting.com;

Next you need to define your streams and use cluster_ingest directive:

streamEcamO01E{
EEurlE...;
EEcluster_ingest;

}

streamEcam02E{
EEurE...;
EEcluster_ingest;

}

streamEcam03E{
EEurlE...;
EEcluster_ingestEcapture_at=s01.myhosting.com;

}

You can specify an explicit option to bind to a single server. This is not a hard binding, because if the
server is turned off, the stream will be started on others.

For a sufficiently large number of streams they will be evenly distributed between the servers.

If the server is shut down, the streams will be automatically started on other servers. If it turns on, this
streams will be restarted on the this server again.

If we request a stream from any server in the cluster which does not have this stream, it will redirect
you to a different server using a special code.

So you can actually go to any server in this cluster, and you can be sure that you will be redirected to
the currently active server.

Currently this feature can be used to capture video from a camera or in a situation where it is
necessary to use a narrow channel for a large number of TV channels and distribute them among
repeaters in the datacenter.

We plan to implement the following related features:

page 88 from 235



automatic replication of an archive from a backup server to a primary server and then erasing this
data on a replica

alternative configuration for the transcoder, which is used in case of emergency channel switching
from a nearby server

Timeouts

You can play with timeouts in this configuration, but you need to be very careful. Setting too small
timeouts will make system unuseable.

Remember very important fact: in the network it is impossible to distinguish between connection loss
and very long delay.

peerEs01.myhosting.comE{
EEfetch_timeoutE1;
EEstale_timeoutE3:;

}
This will tell Flussonic Media Server to fetch streams from peer once per 1 second. It is VERY often, do
not use it in production, but you should play with it. fetch_timeout is responsible for it.

stale_timeout 3; will tell Flussonic Media Server to make streams from that peer as dead after 3
seconds of non-response from that peer.

So if that peer is overloaded and cannot respond in 3 seconds, he is considered dead and cluster
ingest mechanism will start his streams on local host.

page 89 from 235



Load balancer

Flussonic Media Server (IPTV Plugin) can balance users between several Flussonic Media Server nodes
using cluster peering mechanism.

It will redirect users from load balancer node (that don't have any streams) to other servers.

Important! The balancer is installed ONLY on a separate server and requires an additional license.

Configuration

Enable loadbalancer and set multiple Flussonic Media Server peers:

#EGlobalEsettings
httpE8080;
cluster_keyEsomekey;

peerEpeerl.example.com;
peerEpeer2.example.com;
peerEpeer3.example.com;

pluginEiptvE{
EEdatabaseEsqlite:///opt/flussonic/priv/iptv.db;
EEloadbalanceEbitrate;

}

You need to set same cluster_key on all cluster hosts.

Peer config example:

#EGlobalEsettings
httpE8080;
cluster_keyEsomekey;

sourceEorigin.example.comE{

}

Loadbalancer have 2 modes: bitrate and usage. In bitrate mode Flussonic Media Server route users to
peer where a lowest output bitrate. In usage the same thing, but with account of specified maximum
bitrate (usage: output bitrate / max bitrate * 100).

All peer can have same streams, Flussonic Media Server will route clients to least loaded server.

Or all peers can have different streams, Flussonic Media Server will route clients to proper peers.

How to use the loadbalancer

page 90 from 235



Use the regular URLSs for retrieving streams:

http://loadbalancer/STREAM/index.m3u8 - for HLS
http://loadbalancer/STREAM/mpegts - for HTTP MPEG-TS
rtmp://loadbalancer/static/STREAM - for RTMP

Loadbalancer know all the URLSs that Flussonic Media Server provides for streams.

page 91 from 235



Peering

Flussonic Media Server can connect to another Flussonic Media Server (peer), take list of running and
available ondemand streams and route clients to proper peers using cluster peering mechanism.

Configuration

You can set Flussonic Media Server peer:

#EGlobalEsettings
httpE8080;
cluster_keyEsomekey;

peerEpeer.example.com;

You need to set same cluster_key on all cluster hosts.

You can set multiple peers:

#EGlobalEsettings
httpE8080;
cluster_keyEsomekey;

peerEpeerl.example.com;
peerEpeer2.example.com;
peerEpeer3.example.com;

All peers can have different streams, Flussonic Media Server will route clients to proper peers.

Redirection

Flussonic Media Server will redirect clients to peers when you ask for a stream.

It is a very important difference between peer and source, because source is designed for moving
data via a dedicated channel from origin to edge.

Peering is designed for situations when client can take video stream from any server in a group, so
servers (peers) in a group talk to each other and tell what streams do they have.

When client connects via HLS, HTTP MPEG-TS, RTSP, RTMP or opens embed.html to any of servers in a
group, it may redirect to another server where this stream is really located.

Load balancing

Plugin iptv can balance users because it can redirect to another server if a stream is launched locally.

It can take a look at load of current and other servers and send users on another server.

page 92 from 235



CDN Organization

When one server for distribution of video is no longer enough, one has to organize a content delivery
network (CDN).

Flussonic has a number of features to simplify this task. Surely, this article cannot claim to be a
detailed instruction about organizing an income-generating CDN, but we can provide some pieces of
advice about how Flussonic may be useful.

In this article, we will consider a small network of 3-10 servers broadcasting live shows.

Regional distribution

We will consider a situation when a video is captured from a satellite in Russia/Europe and
transmitted to Europe/America for re-translation.

The videos will have to be transmitted to long distances via public Internet, therefore it will be
impossible to guarantee the quality of the channel.

The organization will be as follows:

in the capture region, there will be at least two redundant servers
in the region of broadcasting, the servers will capture video from one of two sources

each channel will be transmitted between the regions only once, in order not to generate extra
traffic

some channels that are rarely used will be transmitted only upon user request
in the capture region, video will be recorded in order to prevent losses in case of channel outage
in the broadcasting region, video will also be recorded for archive distribution.

Using this scheme, we will show Flussonic's capabilities.

Capturing
Various configurations may be made for capturing streams in the network, and their configuration
depends on whether the video may be taken from the source several times, or not.

In the easiest case, if you have a video coming in a multicast via UDP, you can just configure capturing
the same video from different servers (further named as grabberl.cdn.tv and grabber2.cdn.tv):

httpE8O0;
cluster_keyEmysecretkey;

streamEortE{

EurlEudp://239.0.0.1:1234;

EdvrE/storageE3d;

}

Here and further on, we mean that the servers have correct hostnames that can be resolved.

Also, there is an important point with a single cluster key on all servers. Here we have chosen

page 93 from 235



mysecretkey, but it may be changed.

In this mode, the capturing servers run completely independently, the archive is written to both
servers, and both servers are constantly available. However, this scheme requires multiple capturing
from the source, while it is not always convenient or possible. For example, if a package of channels
received via HTTP fits 500 to 800 Mbit/s, double capturing may require serious extending the input
channel above one Gbit/s.

If you do not wish to capture the video from the source several times, you can configure cluster
capturing.
The same config is added to the capturing servers with the stream:

httpE8O0;
cluster_keyEmysecretkey;

streamEortE{

EurlEtshttp://origin/ort/mpegts;
Ecluster_ingestEcapture_at=grabberl.cdn.tv;
EdvrE/storageE3d;

}

With such a config on both capturing servers, all videos will be captured by a single server, the second
one will run in hot standby mode. The capture_at option specifies to the servers that grabber1 is first
priority for capturing. If it is not specified, the stream will be uniformly distributed between the

servers, which can also be a good idea.

If grabberl.cdn.tv fails, grabber2.cdn.tv will react to it, and will automatically add the streams.

In this configuration, the second server is idle, its archive is not being written, and it will start only if
the first server is down.

If the archive should be completely backed up, a different configuration is required.

If you wish to keep a single point of video capturing, but you wish to have a redundant archive, the
second server should constantly pick up and write streams. To do so, different configs should be
made at different servers.

At grabberl.cdn.tv, the configuration will be as follows:

httpE8O0;
cluster_keyEmysecretkey;

streamEortE{
EurlEtshttp://origin/ort/mpegts;
EdvrE/storageE3d;

}

Video is captured from the source and written to the hard disk.

At grabber2.cdn.tv, the configuration will be another:

httpE8O0;
cluster_keyEmysecretkey;

streamEortE{
EurlEhls://grabberl.cdn.tv/ort/mono.m3us;
EurlEtshttp://origin/ort/mpegts;
EdvrE/storageE3d;

page 94 from 235



}

grabber2 will try to capture the video from the first server, but if it is down, it will access the source
directly.

Transit from capturing to streaming

From the point of view of the servers located in the distribution region, the capturing servers are the
source that usually cannot be captured more than once, so you can use the advice about distribution.

However, there is no need to configure all channels manually and keep an eye on them. You can use
Flussonic capabilities instead.

At the streamerl.cdn.tv server, which is receiving the captured video, it is sufficient to write the
following into the configuration file:

httpE80;
cluster_keyEmysecretkey;

sourceEgrabberl.cdn.tvEgrabber2.cdn.tvE{
EdvrE/storageE7dEreplicate;
}

With this configuration, Flussonic will pick up the channels from one or another server, write them
locally to the archive and, if necessary, spool the data available remotely, but absent locally.

If some channels are not needed for continuous operation, they may be labeled as channels on
request:

httpE8O0;
cluster_keyEmysecretkey;

sourceEgrabberl.cdn.tvEgrabber2.cdn.tvE{
EexceptEortE2x2;
EdvrE/storageE7dEreplicate;

}

Distribution

In case of distributing a large amount of video content, there is a need to solve the problem of load
distribution.

It is optimal where middleware is engaged in distribution. This is the most reliable scheme from the
point of view of the clients (not all of them support redirects), but you can use other options, as well.

It makes sense to organize the streamers same as the transit, but the content should be picked from
the local servers:

httpESO:;
cluster_keyEmysecretkey;

sourceEstreamerl.cdn.tvEstreamer2.cdn.tvE{
EcacheE/cacheE2d;

}

In this case, we have engaged a segment cache, rather than DVR. Flussonic will put the segments into

page 95 from 235



the cache and, if necessary, distribute them from there. Sure, it makes no sense to place the cache on
spindle drives, only SSD should be used.

Live broadcasts are still served from the memory and take 10 gigabits without problems, but cache
from a single SATA SSD is limited by 6 Gigabit SATA bus. This may be solved by making a RAID 0 of
several SSDs.

The important point here is that the segments captured by the grabber will reach the last streamer in
the chain without changes and with the same names, and will remain in the same form for both live
broadcasting and the archive. This behavior significantly differs from that of other video streaming
servers.

page 96 from 235



Digital Video Recording (DVR)

DVR features

With Flussonic Media Server, you can use rich archives-related functionality:

Real time recording and viewing IP cameras without limitations on the archive size
Recording and deferred viewing of TV channels without limitations on the archive size
Maintaining the archive depth (for example, 1 week)

Broadcasting HLS, HDS, MPEG-TS, RTSP, RTMP, DASH

Broadcasting in the timeshift mode (for example, video can be shifted for an hour back)
Export of video to MP4 files

Recording video to an enterprise storage or to a cloud storage such as Amazon S3.

Advantages of DVR in Flussonic

Video archiving in Flussonic Media Server has a number of features that distinguish it from
competitors:

No limitation on archive size: you can store months or even years of video

Access to an archive as if it was an endless video tape

Thumbnails are part of an archive (this allows a fast preview of individual thumbnails without
rewinding)

Built-in restreaming and replication of archives (for a group of Flussonic Media Servers)
Good speed of reading and recording, reduced disk 1/0 when recording.
SSD caching.

Using DVR archives in Flussonic Media Server

DVR configuration

DVR playback. Playing the archive using the web interface or special URLs
Reading DVR via different video protocols

Timeshift in a different time zone.

Recording of programs (Catchup TV)

Exporting archive records to MP4

DVR API

DVR and authorization. Authorization of access to the archive

Making thumbnails of video tracks and saving them in the archive
Cluster DVR. Storing archives in a distributed video delivery environment
Automatic replication of archives between servers.

Record the archive in the CcloudE storage (S3 or Swift).

page 97 from 235



Archive (DVR) Configuration

About DVR archive configuration

With Flussonic Media Server, you can record video streams and work with video archives. We call this
functionality DVR (digital video recording).

DVR archive settings in Flussonic Media Server are individual for each stream.

To start recording a stream, define where the archive will be stored. Then, optionally, define other
parameters such as limitations on the archive.

Note. You can specify all possible settings in the configuration file. For a quicker way to configure
Flussonic Media Server, use the web interface (Ul) B it supports all frequently used settings.

On this page:

Where you can store archives

Setting up archive' in the Ul

Setting up archive' in the configuration file
Archive replication

Archive caching on SSD

Copying streams in chunks to another storage
Path to archives on the disk

Turning off indexing to speed up Flussonic

Where you can store archives

With Flussonic Media Server you can store video archives:

Locally on Flussonic Media Server. Learn more later on this page.

In a cloud storage (OpenStack Swift or Amazon S3). Learn more in Storing archives on an HTTP
server.

Setting up archive in the Ul
After you have added a stream, you can set up how it will be recorded and stored.
To specify stream recording settings:

Open the Flussonic Media Server's web interface.
In Media, click a stream name under Streams, then go to the DVR tab.
Specify:

Path D a local directory on the server where the archive will be stored. For example, /storage.
In practice, for a number of channels with different names, you can specify exactly the same path on

the disk. Flussonic creates subdirectories for each stream, so the archives will be stored each in a
separate subdirectory. Learn more in Path to archives on the disk.

page 98 from 235



To make a copy of a stream's archive part by part, use the copy option. For example:
I/storage copy=/opt/movies

Saved duration (optional) B how many last hours or days to store. For example, if you set 30 days,
then a part of the recording older than 30 days will be removed from the archive.

To change the unit, click it until the necessary unit appears. You can choose from hours and days.

Allowed absolute disk usage (optional) B the maximum disk space usage. For example, 10 Gigabytes.

To change the unit, click it until the necessary unit appears. You can choose from Gigabytes,
Megabytes, and Kilobytes.

Also, you can enable replication of the archive and put the archive in cache.

After you set up recording, a green status bar in the web interface appears:

Setting up archive in the configuration file

To store the recording of a stream on the server, add the dvr parameter to the Flussonic configuration
file (/fetc/flussonic/flussonic.conf) for each stream that you want to record.

For example:

streamEchannell1E{
EEurlEtshttp://vic:9090/;
EEdvrE/storage;

}

streamEchannel2E{
EEurlEtshttp://vic:9090/;
EEdvrEswift://user=office:max&password=secretpass&@prod1.local:8080/movies;

}

In this configuration, the stream channell will be stored in /storage/channell/, and the stream
channel2 will be stored in the Swift cloud storage.

Archive size

Use these parameters to limit the size of an archive:

2d

Archive depth (hour or days). Example: 2d, 10h. We don't recommend specifying less than 2 hours.
90%

Maximum disk consumption (percent). The default value is 95%. You should never use 100%
because an average file system cannot operate when it is completely full.

Warning. We strongly recommend that you specify identical values for all streams, if you record
more than one stream. For example, 90% for each stream. Otherwise, conflicts might occur and
some data might be lost.

10G
Maximum disk consumption in Gigabytes (G), Megabytes (M), or Kilobytes (K). You can calculate that

page 99 from 235



1-mbit stream produces 10 Gigabytes per day.
Recording schedule

schedule=8:00-16:00

The parameter schedule allows you to set a schedule for recording, in the form of time intervals. The
time is specified in UTC in hours and optionally with minutes. The interval can overlap midnight: 22-
1:30. A schedule can contain multiple intervals, separated by a comma: 8:00-16:00,22-1:30.

An example of a dvr setting is:

streamEchannel0E{

EEurlEtshttp://vic:9090/;
EEdvrE/storageE6hEI0%E10GEschedule=8:00-16:00Ereplicate;
EEcacheE/mount/ssd1E3dE50G;

}

Archive replication

If you have a number of Flussonic Media Servers, you can enable the Replication option to turn on
replication of the DVR archive.

Note: The Replication setting is specified on a restreaming server only. To make replication work,
specify a remote Flussonic Media Server as the source server for your restreaming server.

Learn more:

Cluster restreaming
DVR replication

To turn on replication via the configuration file, use the replicate parameter:

streamEchannel0E{
EEurlEtshttp://vlc:9090/;
EEdvrE/storageEreplicate;
}

To turn on replication via the web interface:

In Media, click a stream name under Streams, then go to the DVR tab.

Click enable under Replication.

Archive caching on SSD

Having a cache of an archive on an SSD disk improves user experience a lot - with cache, users can
quickly rewind or fast forward the video. You can easily make Flussonic copy a recording to SSD.

To turn on SSD caching via the web interface:
Specify the following under SSD disk cache on the DVR tab:

Path - a directory on an SSD disk where the data will be cached.

Optionally, you can limit the size of cached data (in Gigabytes, Megabytes or Kilobytes) and specify
how many hours or days to store data. To change the unit, just click it until the necessary unit

page 100 from 235



appears.

To turn on SSD caching via the configuration file, use the cache parameter:

streamEchannel0OE{
EEurlEtshttp://vic:9090/;

EEdvrE/storage;
EEcacheE/mount/ssd1E3dE50G;
}

Copying streams in chunks to another storage

Flussonic writes a stream to the specified storage segment by segment. You can set up Flussonic to
copy recorded segments in bulk to some other place. This place can be another local directory or a
remote storage.

How copying works

The copy operation takes place during the time when a stream is being recorded. Video data is
accumulated in the specified local directory and then once an hour all recorded segments are copied
to another location.

To copy a recording of a stream to a cloud:

In the configuration file, specify the copy option like this:

streamEchan0E{
EEdvrE/storageEcopy=s3://AWS_ACCESS_ID:AWS_SECRET_KEY@s3.amazonaws.com/mybucketE10G;

}

The stream will be recorded to /storage and copied in parts once an hour to S3.

To copy a recording of a stream to a local storage:

streamEchan0E{
EEdvrE/storageEcopy=/opt/moviesE10G;
}

The stream will be recorded to /storage and copied in parts once an hour to /opt/movies.

Path to archives on the disk

For each stream, Flussonic creates a subdirectory under the directory that you specified as the path to
video archive. The subdirectory is given a name which is identical to the stream name.

For example, lets configure a stream my_stream to be stored in /storage:

streamEmy_streamE{
EEurlEtshttp://vic:9090/;
EEdvrE/storage;

}

Then Flussonic will create a directory /storage/my_stream to save the recording of my_stream.

Turning off indexing to speed up Flussonic

page 101 from 235



This setting applies to services that distribute UGC (User-generated content) in the situations:

If you have a lot of user-published streams, and need to delete old data.

If you need to store all archives permanently.
To quickly determine which archives and which data in them to delete, Flussonic creates an index file
where it lists streams and their archive depths. Purging of archive data takes place at the start of
Flussonic and it can take a long time in case of many streams. To make Flussonic start quicker, you

can disable indexing. Then old data will be deleted individually for each archive when the archive is
accessed.

In another situation where you need to store all recorded data, there is just no point in such indexing.
To disable creating the DVR index file, add the no_index option:

liveEmyliveE{

EEdvrE/storageEno_index;

}

For DVR in a cloud (S3, Swift), this configuration allows different Flussonic servers to record the stream
to a single cloud storage (when you migrate a stream from one server to another).

page 102 from 235



Timeshift to another time zone

Many TV channels broadcasts are intended for only one time zone, and if we speak about Russia, it is
often only the Moscow time zone.

If you want to distribute the same channel to users in Germany or in the USA, you will face a problem:
people have an early morning, but they are already watching evening broadcasts.

Flussonic can delay stream playback for a few hours, so that people in a different time zone watch the
CGood morningE broadcast in the morning, and not late at night.

There are several technical ways to organize this in Flussonic Media Server, based on the frequency of
addressing various channels in different time zones. The difference between these methods is the
number of times that the archive is read for delayed playback of the channel. You can start playing

the delayed stream, and the archive will be read once, regardless of the number of people willing to
watch it, or you can provide personalized URLSs to the users, and the archive will be read for each user
individually.

If about 250 channels are written, and you wish to broadcast to 3 locations, you will get a total of 250
channels to write, and 750 to read. It makes sense to leave some channels constantly running, and
start some channels only at the request of users.

Delayed stream

Suppose we have a configured channel:

streamEortE{
EEurlEudp://239.1.2.3:1234;
EEdvrE/storageE1d;

}

It is important that it has a configured archive. Now we can create a second stream:

streamEort-1hE{
EEurlEtimeshift://ort/3600;

}

This thread will read from the archive and playback with a one-hour (3,600 seconds) delay.

You can create as many streams as you wish.

Personal access to the archive

If you have a configured stream:
streamEortE{
EEurlEudp://239.1.2.3:1234;
EEdvrE/storageE1d;

}

it can be assigned URL http://flussonic/ort/timeshift_rel/3600 for playback over HTTP MPEG-TS,
http://flussonic/ort/timeshift_rel-3600.m3u8 for playback over HLS, and multilingual channels can be
assigned http://flussonic/ort/timeshift_rel_mono-3600.m3u8 for set-top boxes.

page 103 from 235



In this case, each client will individually read the archive. This method should be used for rarely used
combinations of channels and time zones.

Skipping gaps in timeshift playlist
If you have gaps in your archive (e.g. your source was down for couple of minutes), then reaching that
gap Flussonic Media Server will return empty playlist while playing HLS timeshift.

If it's acceptable to break the time shift and skip this gap, you may specify playlist url with
ignore_gaps=true param:

http://your-flussonic-server-domain/your-stream/timeshift_abs-123123123.m3u8?ignore_gaps=true

page 104 from 235



Recording broadcasts (Catchup TV)

We have implemented and have in several years debugged an excellent mechanism for recording
video to the archive in Flussonic. This article will explain how to make use of all capabilities of the
archive in the middleware.

The Concept of the Archive

In most middleware recording of broadcasts is arranged according to the principle of the old good
VCR. At the required time according to the schedule, recording starts, then it stops after a while.

Such an approach features many problems, and the main problem is the fact that the schedule is
usually inaccurate, i.e., the beginning of a recording will contain the "tail* of the previous broadcast,
and the final part of the needed broadcast is omitted. Attempts are made to solve this problem by
expanding the time-frame of the broadcast recording, which results in creating overlapping recordings
on the disk.

In Flussonic, we found a different solution. Flussonic writes all videos to the archive in its proprietary
format, and provides access to it, as if it were an endless tape. Each frame has its own address N its
real time of population in the archive. When one wishes to view the archive, you need to tell in what
time frame the video is required.

Players and protocols are not used to such an approach, so Flussonic is able to adapt to various
variants of usage and present the archive in a various forms. For example, you can request Flussonic
by URL http://flussonic-ip/ort/index-1429829884-3600.m3u8 and obtain an hour-long HLS playlist
from moment 1429829884, which will look like a file. I.e. the player will never even be aware that it is
an endless archive, and will just show the limits.

Variants are also possible, where the playback starts with a certain moment in a stream.

Implementation in middleware

In order to provide access to an already recorded broadcast, the middleware should form the URL to
the archive and send this URL to the player for playing back. The URL will look like http://flussonic-
ip/ort/index-1429829884-3600.m3u8

The time for the URL should be taken from the EPG "r the broadcast schedule that can be found in
each middleware. It is important to pay attention to the fact that Flussonic requires time to be
specified in UTC, i.e. GMT.

The player will receive the URL, understand that it is a file and show standard controls for playback.
The broadcast playback can be easily rewound, paused and continued.

A very important point is pausing: the fact is that pausing a stream is a very complicated operation
which is not available in all protocols. It is much easier to slow the playback down.

Viewing current broadcast

Everything becomes more complicated with unfinished broadcasts. Some players, such as iOS,
Android or StrobeMediaPlayback are able to work with the so-called Event playlists. This is a way of

page 105 from 235



providing content where the player knows that the server is now displaying some local event. With
that, the player provides the possibility to rewind to the start, and to return to live broadcasting.

To do so, a URL should be formed that would look like http://flussonic-ip/ort/index-1429829884-
now.m3u8

Be careful, if you request an URL for 24 hours, Flussonic will return a huge playlist. We saw a case
where a client blocked a 100 megabit channel by a request to the same event playlist repeating
several times per second. In this case, Flussonic returned a huge playlist of a few hundred kilobytes
without much load due to well-tuned implementation of the archive.

However, such an URL will not work for many set-top boxes, since the set-top box will only show live
broadcast without the possibility to rewind. For such devices, a JS code should be written, which would
catch rewinding, and send the client to another URL.:

http://flussonic-ip/ort/timeshift_abs-1429829884.m3u8, where 1429829884 is the time of starting
broadcast playback. timeshift_abs HLS URLSs present a great difficulty caused by the nature of the HLS
Protocol. The fact is that Flussonic can only probabilistically join separate HTTP requests into the same
session. Flussonic believes that the session is the same, if for two queries, client IP address, channel
name, query protocol and the token match. In case of several consecutive timeshift_abs requests,
Flussonic will decide that it's the same session, in the end, it may distort viewing. To avoid this, a new
token should be passed in the timeshift_abs request.

A simpler variant is requesting an HTTP-MPEGTS
http://flussonic-ip/ort/timeshift_abs/1429829884
. However, the HTTP MPEGTS option denies access to multibitrate.

Multilanguage

Traditionally, the MPEG-TS protocol provides a standardized mechanism for selecting the language
tracks and subtitles in the same video bitrate.

The HLS protocol that is based on MPEG-TS rejects packing multiple audio tracks into the same stream
and proposes to place alternative audio tracks in separate segments, which then should be mixed in
the player. This is how the iOS player works, but it is not how most players in STB work.

To make the user see several languages, in streaming videos via HLS to such STB, such as Mag, Dune,
Eltex, the URL.: http://flussonic-ip/ort/video.m3u8, http://flussonic-ip/ort/video-1429829884-
3600.m3u8, http://flussonic-ip/ort/timeshift_abs_video-1429829884.m3u8 should be used.

When you request such URLSs, Flussonic packs tracks in a different way, and makes it possible for
players that do not support the HLS standard completely to reach various audio options.

Record status

A more advanced middleware can check with Flussonic whether the broadcast has been recorded or
not. To do so, the request should be sent via HTTP API:

http://flussonic-ip/ort/recording_status.json?from=1429960179&t0=1429963716
The "from" and "to" fields define the limits of the broadcast.

JSON similar to the following will be returned:

[{

EE"stream":"ort",

page 106 from 235



EE"ranges":[{"from":1429960179,"duration":3542}],
EE"motion_log™[]
1

The ranges field contains an array of objects that signify the areas of continuous recording. If there
are gaps in the recording, the array will contain more than one object. If no recording was made

during the specified time interval, the array will be empty.

page 107 from 235



DVR playback

Access to DVR recordings

You can view recordings by using the administration web interface. Also, you can access recordings by
special URLSs.

To access a recording by URLSs, use stream mode or file mode.

A file, compared to a stream, has an end. That is, when playing a file, a player shows a timeline, and
the video is limited (it has the beginning and the end). When playing a stream, a player doesn't show
progress on the timeline, because the end of a stream is not known.

You can see this difference in URLs too. For example, a file's URL ends with "index-1345345345354-
3600.m3u8" (the limits are defined: beginning at 1345345345354 and end after 3600 seconds), and a
stream URL ends with "timeshift_abs/1345345345354" (only the beginning is defined).

The URLs depend on the protocol that you use for accessing the DVR. Learn more in Accessing DVR by
different protocols.

Electronic Program Guide (EPG)

DVR can be used with EPG. The modern approach to the provision of television archive b record the
entire video, and then provide access to the archive (or rewind current video) using the EPG.

Learn more in Middleware in IPTV OTT.

All metadata will be stored in a middleware and Flussonic Media Server will provide access to this
archive as an infinite tape (with convenient navigation).

Two modes exist:

view already recorded video

view live streams
If the show is already over, the middleware forms the link based on EPG to view the archive. The user
can see the recorded movie as a normal file. For example, if the show is started at 18:15 Moscow time

(14:15 UTC) on August 27 and continued for an hour, the middleware should create URL like this:
http://flussonic:8080/ort/index-1409148900-3600.m3u8.

If the show is not over, the middleware may create special URL to the archive, that allows to rewind
live to its beginning. Unfortunately this feature supported on a few devices and STBs, but nevertheless
it exists. URL for this unfinished video will be like this: http://flussonic:8080/ort/index-1409148900-
now.m3u8

Viewing DVR from the administration web interface

You can view the contents of an archive in the Flussonic Media Server Ul. Click a stream name in
Streams on the Media tab, then click the DVR tab. You'll see the timeline bar and video will be played
in real time.

Timeline

The timeline bar consists of several zones indicated with different colors. The red color means no
recording at this time, green means that a video record exists, and blue means the current hour.

page 108 from 235



Navigation

You can click anywhere on the timeline bar to begin playing the video starting from that time. Also you
can use buttons to browse the video:

"" and "+" for OzoomingO a time period, so you can select a time more precisely

"<"and ">" for moving a time period to an earlier or later time than displayed on the screen.
Export
You can select a part of an archive to export a video file in MP4 format. Just move gray limiters on the

left and right. You'll see the time of the beginning and end of the selected interval next to the MP4
button. Save the file by clicking MP4.

page 109 from 235



Save to MP4

A fragment of an archive can be exported to a local computer to a file using this URLS:

MP4 file http://flussonic:8080/channel/archive-1350274200-4200.mp4
MPEG-TS file http://flussonic:8080/channel/archive-1350274200-4200.ts
Where 1350274200 is a fragment's start time in unix time. And 4200 is fragment's duration in seconds.

precise=true option increases export accuracy up to a second:

http://flussonic:8080/channel/archive-1350274200-60.mp4?precise=true

A fragment of an archive can be saved to server HDD as MP4 using this URL:

http://flussonic:8080/channel/save-mp4-1350274200-42007file=recordingl.mp4’

The file will be saved in the same directory where DVR recordings are stored.

page 110 from 235



DVR access via existing protocols

Basic ways of accessing DVR

Access to archives is based on Unix timestamps, which are in the UTC time zone. This approach may
be inconvenient if you use only one time zone, but it's the only really good way to deal with things
such as daylight saving time.

On this page:

HLS playback

Multi-language HLS and mono-language HLS

HDS playback

HTTP MPEG-TS playback

DASH playback

DASH manifests for playing back archives of live streams
RTMP playback

RTSP playback

Timeshift

HLS playback

HLS can be played on a computer or STB, but it is especially required for video playback on mobile
devices (i0S, Android).

An URL for HLS playback should be like this: http://flussonic:8080/channel/archive-1350274200-
4200.m3u8

This URL means that Flussonic should play 4200 second, starting from 1350274200 second, as a file
accessed by HLS. 1350274200 is a UNIX time in the UTC time zone.

If an original stream contains multiple audio or video tracks, this URL will produce a so-called HLS
variant playlist (Apple's standard), which alows Apple iOS devices (iPhone, iPad) to select a language
and bitrate. Segments will be produced with less tracks in this case. If you use any other device (non-
Apple), try to use special URLSs.

This mode is very good for a planned shows: you can use this URL in a middleware web interface,
based on EPG, and you will not need to waste a disk space for single shows.

In OSMF player it looks like this:

Multi-language HLS and mono-language HLS

For STBs that do not fully support HLS, you may use special video-URLs. The difference in that this
URLSs produce video segments with all available audio tracks. It is violation of HLS standard, but most
STBs can operate in this mode only.

Here is the list of supported URLSs:

fixed time period: http://flussonic:8080/channel/video-1350274200-4200.m3u8
absoulte timeshift: http://flussonic:8080/channel/video-timeshift_abs-1350274200.m3u8

page 111 from 235



rewinding: http://flussonic:8080/channel/video-1350274200-now.m3u8

Timeshift and rewinding are described there.

HDS playback

HDS URL should be like this: http://flussonic:8080/ORT/archive-1350274200-4200.f4m

In the past HDS URL was: http://flussonic:8080/channel/archive/1350274200/4200/manifest.f4m - it is
still supported but will be deleted in newer releases.

This URL means that Flussonic should play 4200 second, starting from 1350274200 second, as a file
accessed by HDS. 1350274200 is a UNIX time in the UTC time zone.

HDS is necessary to use it with flash-players. You can't play it on Apple iOS devices (iPhone, iPad).

HTTP MPEG-TS playback

A fragment of an archive can be retrieved not on the full speed, but in the streaming mode, over a
time equal to the length of the fragment. You can use a URL like this:
http://flussonic:8080/channel/timeshift_abs-1350274200.ts.

DASH playback

You can request a fragment of archive as a file by using the following URL:

http://flussonic:8080/channel/archive-1350274200-4200.mpd

With this URL, Flussonic Media Server will transmit a range of 4200 seconds starting from Unix
timestamp 1350274200.

DASH manifests for playing back archives of live streams

Note. This information is useful if you need a static manifest for playing DVR over DASH of a currently
live stream.

http://flussonic:8080/channel/archive-1350274200-4200.mpd

1350274200 N the start time of a requested chunk in DVR archive.
4200 N how many seconds to play back.

Imagine you have streams that are broadcasted live and recorded to DVR. For playing them back from
the archive, the requested fragment might end in the future where no broadcast exists yet.

Flussonic allows you to choose the type of manifest (playlist) to send to clients when playing back DVR
of such live streams over DASH. A DASH manifest can be static or dynamic (updatable).

By default, Flussonic updates the manifest along with live broadcast progress, which means the
manifest is dynamic. When the real time reaches the specified moment when the archive fragment
must end, the manifest automatically becomes static because all info about the stream is received and
there is no need to update the manifest any longer. In some cases it might be better to use a static
manifest.

To specify the type of a manifest, use the dynamic parameter:

dynamic=false. Flussonic Media Server will generate a static manifest. In a player, an archive will be

page 112 from 235



m rmy mp my e mp

m mp

played the same way as a file. The manifest will contain information about the requested time range
and will not be updated during playback.

http://flussonic:8080/channel/archive-1350274200-4200.mpd?dynamic=false

dynamic=auto. This is the default behavior, so this parameter can be omitted. First, Flussonic creates
a dynamic manifest (and updates it while a live broadcast is going in parallel with DVR playback).
Then Flussonic changes the manifest to static P it happens when the live broadcast reaches the end
time of the requested DVR fragment.

http://flussonic:8080/channel/archive-1350274200-4200.mpd?dynamic=auto

RTMP playback

Flussonic can play an archive via RTMP. You may use the following arguments:

varEflashvarsE=E{

EEEstreamer:'rtmp:/flussonic/rtmp’,
EEEfile:E'ort?from=1398267588&t0=1398268588',

EEE rtmp.tunneling':false,

EEEautostart:Etrue

h
Eswfobject.embedSWF('/qu/jwpIayer.swf',element,'640','480‘,'10.3','fa|se',Eflashvars,
EEE{allowfullscreen:'true',allowscriptaccess:'always'},

mp

EE{id:'jwplayer',name:'jwplayer'}
E);

So you need to put a name of the stream, and add a query string with required "from" parameter and
optional "to" parameter.

Also you can use parameter speed=2, speed=4 or speed=8 so Flussonic will play an archive in the
accelerated mode (without a sound).

RTSP playback

Flussonic can play an archive via RTSP. You should use URL like this:
rtsp://flussonic/ort?from=1398267588&t0=1398268588

So you need to put a name of the stream, and add a query string with required "from" parameter and
optional "to" parameter.

Timeshift
Relative timeshift

You can access an archive as regular source but with a time shift. A special URL exists for every
protocol:

MPEG-TS: http://flussonic:8080/channel/timeshift_rel/3600
HLS: http://flussonic:8080/channel/rel-timeshift_rel-3600.m3u8

page 113 from 235



mono HLS://flussonic:8080/channel/mono-timeshift_rel-3600.m3u8

It's important to note that it's better to use special source type "timeshift", that is described further.

Absolute timeshift

This URL: http://flussonic:8080/channel/timeshift_abs-1350274200.ts is for a MPEG-TS stream starting
at 1350274200. Eg you can use it for old STBs or viewing recorded shows with EPG.

Rewinding

This feature forks for HDS, HLS and DASH. It allows to get live with ability to rewind back to a specified
time in seconds.

For HDS URL is: http://flussonic:8080/ORT/archive-1350274200-now.f4m (in the past
http://flussonic:8080/channel/archive/1350274200/now/manifest.f4m).

For HLS there's two different URLS:
http://flussonic:8080/channel/archive/1350274200/now/index.m3u8 works only for Apple devices.
http://flussonic:8080/channel/index-1350274200-now.m3u8 works everywhere (recommended).

For DASH: http://flussonic:8080/channel/archive-From-now.mpd
1350274200 is a UNIX time in the UTC time zone.
In OSMF rewinding looks like this:
Timeshift with a constant delay

You can run a stream which lags behind real time on a constant time. Configure it like this:

streamEchannelE{
EEurlEtshttp://vic:9090;
EEdvrE/storageE10080;

}

streamEchannel-1hourk{
EEurlEtimeshift://channel/3600;

}

A new stream appears in the system, it will lag on 1 hour. If there will be any gaps in the recording, 1
hour will not change.

Repeated requests to the same timeshift URL

It's a frequently asked question: Every time | use the same URL with timeshift_abs to get a HLS playlist
(with the same parameters) | get different results. Why?

When you request HLS URL on a specific channel, Flussonic starts a new session. If you use a timeshift
URL, any additional requests use the same existing session. All video requests runs relative to this
existing session. So if you use the same time in timeshift_abs for multiple requests, really it's not pure
"absolute" time, it's still related to the current session. Therefore every time you request the same

time, you get a different video chunk. It's normal behavior and it's the only good way to implement

HLS timeshift.

You can work around this behavior by changing the token in every new request. That will start new
sessions.

Like this: http://flussonic:8080/mystream/timeshift_abs-1430227800.m3u8?token=123
http://flussonic:8080/mystream/timeshift_abs-1430227800.m3u8?token=124
http://flussonic:8080/mystream/timeshift_abs-1430227800.m3u8?token=125 and so on.

page 114 from 235



Keyframe only export

Keyframe only export

Flussonic offers an experimental feature of exporting keyframes only mp4 files. It could be useful in
time-lapse videos creation. Such files could be downloaded to the customers PC with the following

requests:
http://flussonic:8080/channel/archive-1350274200-4200.mp42?timelapse N request for a keyframes
only file at 25 fps.

http://flussonic:8080/channel/archive-1350274200-4200.mp4°?timelapse=20 N request with fps
correction, exported file will have 20 seconds length.

page 115 from 235



DVR API

Overview

Flussonic provides the HTTP API for accessing DVR b for obtaining data about recorded streams and
for setting up recording in archive. Some actions are available for administrator only and some also
for end users (with token protection).

For example, only the administrator can change configuration or save a file locally on the server. End
users can request stream information, etc.

Here goes the list of available HTTP API calls.
Administrator-only commands

Configure DVR for stream

Stop recording DVR

Start recording DVR

Lock DVR range and protect it from deleting by time
Unlock DVR range and allow deleting by time

Save MP4 files on a server's local disk

Information available for end users to request

Total recorded range

Information about recorded ranges
Requesting JPEG screenshots
Generating JPEG screenshots on demand
Requesting MP4 video screenshots
Exporting MP4, MPEG-TS file from DVR

Configuring DVR on a stream

To configure DVR, you'll need to send administrator's login and password and pass the text
representation of a dvr line in the Flussonic configuration file:

curlE-uEflussonic:passE--
dataE'streamEortE{EdvrE/storageE2d;E}'Ehttp://192.168.2.3:8080/flussonic/api/modify_config

Alternatively, you can use SQL API to create DVR on a stream by means of SQL queries.

To modify the configuration of DVR, use a similar call:

curlE-uEflussonic:passE--
dataE'streamEortE{Edvr_offlineE/storageE20d;E} Ehttp://192.168.2.3:8080/flussonic/api/modify_config

Stop DVR recording

curlE-uEflussonic:passE--dataE"Ehttp://192.168.2.3:8080/flussonic/api/dvr_disable/ort

page 116 from 235



This stops recording DVR on a running stream ort. If a stream will be restarted, it will continue
recording DVR.

Start DVR recording

curlE-uEflussonic:passE--dataE"Ehttp://192.168.2.3:8080/flussonic/api/dvr_enable/ort

This starts recording DVR on the running stream ort. If a stream was configured as dvr_offline or api
call dvr_disable was called before, this call will enable recording. If stream will be restarted, its
recording status will switch to default specified in config.

DVR Lock

You can lock record to revert autodelete it from archive. This can be useful for the organization user
nPVR or save important records.

curlE-uEflussonic:letmein! E--
dataE'{"stream":"ort","from":1483971680,"duration":1000}' Ehttp://192.168.2.3:8080/flussonic/api/dvr/lock

Where:

1483971680 N start time in Unix timestamp;
1000 N duration in seconds.

You can request locks from API by using an URL like this:

curlEhttp://192.168.2.3:8080/ort/recording_status.json?from=1483970680\&to=now\&request=ranges,locks
[{"stream":"ort","ranges":[{"duration":3687,"from":1483970675},{"duration":56758,"from":1483974376},{"
duration":332,"from":1484031143}],"locks":[{"duration":1004,"from":1483971680}]}]

DVR Unlock

If the record is unlocked, it is automatically deleted according to archive cleanup settings.

curlE-uEflussonic:letmein!E--
dataE'{"stream":"ort","from":1483971680,"duration": 1000} Ehttp://192.168.2.3:8080/flussonic/api/dvr/unlock

Where:

1483971680 N start time in Unix timestamp;

1000 N duration in seconds.

Saving archive to MP4

Admin is allowed to export MP4 from DVR and save it immediately on server disk without network
transfer.

curlE-uEflussonic:letmein!E--dataE"Ehttp://192.168.2.3:8080/ort/save-mp4-1350274200-
42007?file=/storage/recordingl.mp4

Where:

1483971680 N start time in Unix timestamp;
1000 N duration in seconds.

page 117 from 235



This will save directly to file /storage/recordingl.mp4
Be careful not to overwrite existing files.

It is possible to pass metadata to save to MP4 file:

curlE-uEflussonic:letmein! E--dataE'someEopaqueEvalue'Ehttp://192.168.2.3:8080/ort/save-mp4-1350274200-
42007?file=/storage/recordingl.mp4&meta=true

Opaque metadata will be stored to the udta.meta.ilst.data atom.

Total recorded range

It is possible to ask Flussonic: what is the total recorded range, where is the beginning and the end of
record:

$EcurlEnttp://192.168.2.3:8080/ort/recording_status.json
{"ort":{"from":1525186456,"t0":1526910900}}

All times here are UTC timestamps.

Recorded status report

You can ask Flussonic what time ranges are recorded on the disk:
curlE-vE'http://192.168.2.3:8080/ort/recording_status.json?from=1525186456'

HereEyouEgetEaEforcedEbriefEresponse.ETakeEaElookEatE"warning™:"too_big_range".EltEhappensEbecauseEtheErequ
estEdidEnotEhaveEtheEforce_detailedEoptionEandEtheEtotalErangeEfromEfromEtoEnowEisElongerEthanE4Edays.

TheEideaEisEthatEusuallyEyouEdoEnotEneedEtoEhaveEpreciseEinformationEaboutEcontinuousErecordedEperiodsEwhen
EyouErequestEseveralEdaysEandEmore.ETheEusageEofEsuchEpreciseEinformationEisElimited.

That'sEwhyEFlussonicEsendsEyouEinformationEthatEisEnotEprecise, EbutEcheapEtoEobtain.E

IfEyouEstillEwantEtoErequestEaEveryEdetailedEinformationEforEaEveryElongEperiodEofEtime,EaddEtheEforce_detailedEo
ption:

curlE-vE'http://192.168.2.3:8080/ort/recording_status.json?from=1525186456&request=ranges,force_detailed'
YouEcanEseeEthatEtheEwarningEdisappearedEbutEtheEtotalEruntimeEisE50EtimesElonger.
WhyEyouEmightEnotEneedEpreciseEinformation:
IfEyouEwantEtoEdrawEaEtimeline, EthenEonEaE 1920pxEwideEscreenEtheEdurationEofEaEweekEmeansEthatE1EpixelEisEres
ponsibleEforEaboutESEminutes.

OneEhourEwillEbeEaboutE10-
11EpixelsEwide.ENoEneedEtoEspendE50EtimesEmoreEonEserverEtoEdrawEUIEmoreEpreciseEinEtheseE10Epixels.

IfEyouErequestEshortEduration, EitEwillEbeEeasier:

curlg-
vE'http://192.168.2.3:8080/ort/recording_status.json?from=1525186456&t0=1525272856&request=ranges'

page 118 from 235



ItEtakesEmoreEtimeEthanEbriefEinformation,EbutElessEthanEaEfullErequest.

TheErequestEparameter
YouEcanEspecifyEtheEfollowingEvaluesEinEtheErequestEparameter:

ranges N returns the list of continuous recorded periods in DVR. This information may change if
your Flussonic is right now replicating information from some source.

brief_thumbnails NEreturns the list of UTC of screenshots saved in DVR. We don't recommend to use
it anymore, because it is better to use approximate GMT time to request JPEG thumbnails N read
later on this page.

force_detailed N forces sending explicit and precise information even on very long time range.

hour_bitmap NEsends brief recorded information as a large string with bit map of recorded hours. It
is the most compact way to fetch estimated DVR information. Not working if ranges is specified.

locks NEasks for the list of DVR locks.
motion_log NErequests events from motion detector.

To get various data in one request, specify these values separated by comma, for example,
request=ranges,hour_bitmap.

Motion detector marks

Motion detector marks the start and end time of an event received.

You can request when motion started and for how long it lasted by using recording_status.json with
the parameter request=motion_log. With the from and to parameters specify the time period you are
interested in.
curlEhttp://192.168.2.3:8080/cam_office/recording_status.json?from=1528144663&t0=1528148263&request
=motion_log

[{"stream":"cam10","motion_log":[{"data":{"duration™:42,"start":1528145203},"subtype":"range", "type":"m
otion"}}]

Requesting JPEG screenshots by GMT time

If you have configured thumbnails on your DVR or HTTP thumbnails, Flussonic writes the thumbnails
on the disk, and you can access them by special URLs. These URLSs contain the GMT time of a moment
in video.

Flussonic allows finding JPEG thumbnails by an approximate time. For example, you might know from
the motion detector that something happened around some point in time or you might know the
necessary time from the timeline in a player.

It is resource-intensive to get the exact GMT time for each screenshot because it requires getting the
list of screenshots with UTC time and converting it to GMT. Flussonic helps you here - it can find the
nearest GMT time to the time that you specify when a thumbnail was created.

So, in this API, Flussonic corrects your request if you do not know the exact URL of a thumbnail, and

page 119 from 235



returns a ready-to-use exact URL.

For example, we request a screenshot by this time: 2018/05/02/06/59/38. At this time no thumbnail
was created, but there is one near it. Flussonic returns Location with the correct time
2018/05/02/07/00/40, which we use to get a screenshot:

curlE-vE'http://192.168.2.3:8080/0rt/2018/05/02/06/59/38.jpg’

Generating JPEG screenshots on demand

It is possible to ask Flussonic to generate JPEG on-the-fly. It can reduce disk space, disk I/0O on write,
but be careful and protect it with authorization because it is not cheap for CPU:

curlE-vE'http://192.168.2.3:8080/0rt/2018/05/02/07/00/40-preview.jpg'

Requesting MP4 video screenshots

We recommend that you stop using JPEG screenshots and use our video-thumbnails. Video-
thumbnails of DVR are accessible in the similar way as JPEG screenshots. Flussonic corrects your
request if no suitable frame is available at the specified time.

curlE-vE'http://192.168.2.3:8080/0rt/2018/05/02/06/59/38-preview.mp4'

YouEwillEreceiveEanEMP4EfileEconsistingEofEoneEframe.

Exporting MP4, MPEG-TS file from DVR

Example of a request to Flussonic for sending a part of one hour of DVR as an MP4 file over HTTP:
curlE-vEhttp://192.168.2.3:8080/ort/archive-1525186456-3600.mp4

page 120 from 235



Cluster DVR

Problems of DVR clustering

The task of archive storage in a distributed video delivery environment creates several problems:

It's necessary to ensure the safety and availability of an archive. RAID-systems do not solve the
problem because when you turn off the server all data on it becomes unavailable;

for a popular content it's necessary to ensure the delivery of the archive closer to users and to
ensure load reduction on source servers;

in a geo-distributed video delivery environment you must be able to restore the integrity of the
archive on the secondary servers after a loss of the source server;

The easiest option for clustered DVR access is to turn DVR on the source and on the secondary
servers.

Clustering of DVR in Flussonic can be turned on easily: use the "source" directive to receive the video:

sourceEorigin1E{
EEdvrE/storageE2d;
}

In this case, the local server, even if DVR is turned off, will respond to the DVR queries (but not over all
protocols), receiving the missing video from the source.

An important feature of Flussonic is the ability to use separate segment cache on the SSD for reducing
load. Usually up to 90% of all visits is for the last day of a video, so for broadcasting of a large-scale
events you can use SSD to reduce HDD load:

streamEortE{
EEEurlEudp://239.0.0.1:5000;
EEEdvrE/storageE80d;
EEEcacheE/cacheE2dES00G;
}

When using DVR clustering, you can omit the "storage" on the secondary servers and specify only a
segment cache:

sourceEorigin1E{
EEEcacheE/cacheE2dE400G;

}

In this configuration the secondary server will use a segment cache to store DVR, but actually the
entire archive will be controlled by the source server. In case of loss of communication with the
source, the secondary server will not be able to respond to requests to the archive.

page 121 from 235



DVR replication

Catching DVR replication

Flussonic Media Server have the unigue ability to automatically replicate an archive of a video stream
between servers. After establishing a connection between a source and a secondary server, the
secondary server will automatically use the missing video from the source.

In this case, the secondary server can limit the total rate of replication, because it should not interrupt
a live broadcast or reduce its quality. This feature can be used in several cases:
Copying an archive to other servers for reliability with auto-recovery after failures;

Broadcasting with a time shift in another time zone, with reliable automatic recovery of a missing
video.

To enable replication you should use the replicate keyword in a dvr configuration:

sourceEorigin1E{
EEdvrE/storageE20dEreplicate;
}

It is not recommended to use dvr_offline option instead of dvr because replicate keyword enables
recording automatically.
Replication can be enabled for a specific stream:

streamEortE{
EEurlEm4f://flussonicl.myhosting.com/ort;
EEdvrE/storageE7dEreplicateE;

}

We recommend to use Flussonic internal protocol m4f to get the stream in this case. You can read
more about the benefits of m4f protocol here.

page 122 from 235



DVR in a cloud

Storing archives in a cloud

Flussonic can record streams' archives to remote HTTP storages N Amazon S3 and OpenStack Storage
(Swift).

By default, Flussonic writes a stream to the storage segment by segment, and this may be expensive.
To make it more affordable, use the copy option that Flussonic offers (read later on this page).

To store a stream on Amazon S3, configure it like this:

streamEchan0E{
EEdvrEs3://AWS_ACCESS_ID:AWS_SECRET_KEY@s3.amazonaws.com/mybucketE10G;

}

To store a stream in OpenStack Storage (Swift), configure it like this:

streamEchan0E{
EEdvrEswift://user=video:streamer&password=SECRETPASS&@swift-storage.local/moviesE10G;

}

To store a stream in Akamai Storage, configure it like this:

streamEchan0E{
EEdvrEakamai://keyName:keyValue@akamaihd.net/cpCode/dvrE10G;

}

Copying video archives to the cloud

The copy option helps significantly reduce the number of times that Flussonic accesses the disk on a
cloud.

Flussonic first accumulates recorded video data on a local disk (in the specified directory). Then, once
an hour, it copies the data to the cloud.

Specify the copy option like this:

streamEchan0E{
EEdvrE/storageEcopy=s3://AWS_ACCESS_ID:AWS_SECRET_KEY@s3.amazonaws.com/mybucketE10G;

}

Recording to the network storage when a stream was
migrated

The group of Flussonic servers can work with the same storage, keeping all records in one directory.
When a stream migrates from one server to another, the new server will catch the recording made by
the old server.

The easiest way to migrate a stream is by using the SQL API:

mysql>EupdateEstreamsEsetEserver='srv03.cdn.local'EwhereEname='bunny?2’;
QueryEOK,E1ErowEaffectedE(0.02Esec)

page 123 from 235



Flussonic completely transfers the configuration of the stream to the new server, and the archive will
continue to work automatically. More about SQL API.

Important! Multiple servers must not record the same stream at the same time.

See also

Digital video recording (DVR)
Archive configuration

page 124 from 235



Authorization

Flussonic Media Server implements identification of users and tracking of connections using
Cauthorization backendsE. It uses HTTP features for HLS and HDS protocols, and handling of
persistent TCP sessions for RTMP, RTSP and MPEG-TS.

The process of working with a backend described in the section Authorization using a backend.

In addition, Flussonic Media Server has a built-in mechanism for a basic protection against embedding
video players on other sites. More details about this protection you can read in the section Domain
lock.

Flussonic Media Server can also check for a password when publishing a stream. More details about
this you can read in the section Authorization for stream publishing.

Authorization using a backend

Flussonic Media Server supports multiple authorization backends.

How to enable backend

Backends can be enabled by adding the auth directive to the configuration file:

authEhttp://host;
When host is:

empty (by default)

Flussonic Media Server allows all requests.
HTTP address

Flussonic Media Server will make HTTP requests to this address and will pass session parameters to
the backend.

Path on disk

it's interpreted as a path to a Lua script that will act as a backend. More information about the
scripting you can read in the article devoted to Lua scripts.

Authorization using a backend

Basically it looks like this:
A more detailed description of the authorization procedure

Add the Flash Player or HTML video tag on your website or middleware, and use the path to a video
with an authorization key (token) that is created on this website, in one of these forms:

page 125 from 235



query string for HLS, HDS, HTTP MPEG-TS and other HTTP-based protocols:
http://192.168.2.3:8080/stream1/manifest.f4Am?token=60334b207baa

http://192.168.2.3:8080/stream1/index.m3u8?token=60334b207baa
RTMP address: rtmp application rtmp://192.168.2.3/static stream name:
stream1?token=60334b207baa

RTSP address: rtsp://192.168.2.3/stream1?token=60334b207baa

If your site or middleware does not use tokens in a video path, Flussonic Media Server will generate
a token automatically.

If your configuration file has a global no_auto_token option, Flussonic Media Server will not generate
a token and will immediately return the 403 status, denying access to the content.

query string for HLS, HDS, HTTP MPEG-TS and other HTTP-based protocols:
http://192.168.2.3:8080/stream1/manifest.fAm?token=60334b207baa

http://192.168.2.3:8080/stream1/index.m3u8?token=60334b207baa

RTMP address: rtmp application rtmp://192.168.2.3/static stream name:
stream1?token=60334b207baa

RTSP address: rtsp://192.168.2.3/stream1?token=60334b207baa

Upon receiving a request with a token, Flussonic Media Server tests whether the session is open
(stream is already broadcasted from the server to the client). Session identifier is a hash sum created
as follows:

hash(stream_name + client_ip + token)

If the user changes his IP address, or switches to another stream, a new session will be created.

If there's no open sessions, then Flussonic Media Server makes a request to the auth backend, with
the following parameters:

token.

Token, that is generated automatically or by a web site
name.

Name of a stream or a file

ip.

client IP

referer.

HTTP Referer or RTMP pageUrl

total_clients.

The total number of open sessions on the server
stream_clients.

The number of open sessions for this stream
request_type.

new_session for new session or update_session for existing session

page 126 from 235



type.
hds, hls, rtmp, rtsp, mpegts or mp4

token.
Token, that is generated automatically or by a web site

name.
Name of a stream or a file

ip.
client IP

referer.
HTTP Referer or RTMP pageUrl

total_clients.
The total number of open sessions on the server

stream_clients.

The number of open sessions for this stream

request_type.

new_session for new session or update_session for existing session
type.

hds, hls, rtmp, rtsp, mpegts or mp4

If the backend returns the HTTP status code 200, the session is opened or continued.

If the backend returns the HTTP 401 or 403, the session is closed.

If the backend returns the HTTP 301 or 302, the request is redirected to the address from HTTP
Location header.

All other statuses and timeouts are interpreted as a lack of data and the query is repeated.

Session is opened

If the backend allows opening of the session, by default Flussonic Media Server will re-check session
every 3 minutes to determine that the session is still active.

You can send an "X-AuthDuration" HTTP header to change this time. X-AuthDuration is specified in
seconds.

After 3 minutes (or other period of time, if it has been changed with X-AuthDuration) request will be
repeated. If the backend is not available or returns the HTTP 500, Flussonic Media Server will keep
previous status received from the backend, and will send the request again.

Important. If you change "auth" option in the config file (ie added new auth url), this option will be
applied only for new sessions, already opened sessions remain intact.

Session is closed

If the backend banned the session, the information about this session will be cached on the server. If
the user tries to open stream again with the same token, Flussonic Media Server will reject it without
making new calls to the backend.

Example of auth script (PHP)
Let's store credentials in auth.txt file, pre-populated with the following data:

userl:tokenl
user2:token2

page 127 from 235



user3:token3

The following PHP script will check whether a token in this file, and allow the opening of a session for
existing tokens:

EEEE}
}

if($tokens[$token])E{

EEEheader("HTTP/1.0E200E0K"):

EEEEheader("X-Userld:E" . $tokens[$token]."\r\n");
EEEheader("X-Max-Sessions:E1\n\n"):E//E TurnEthisEonEtoEprotectEfromEmultiscreen
EelseE{

EEEEheader('HTTP/1.0E403EForbidden’);

}

m»

-~ M

?>

Gathering statistics using X-Userld

When a new session is opened, backend may send CX-UserldE HTTP header to a Flussonic Media
Server (eg, X-Userld: 100), that will be recorded in the internal database with a data of the session
when this session will be closed. To build statistics you can request information about a session using
MySQL protocol and X-Userld.

If a backend sends X-Unique: true alongside with X-Userld, it will close all other open sessions that
have the same X-Userld. It's important to note that disconnected sessions remain in a memory of a
server for some time, therefore clients with the same combinations of IP-address, stream name and
token will not be able to access content.

If you use X-Unique you should generate different tokens for each time a user accesses a page.

> Debug logging.

Detailed description of how to do logging of requests using PHP, is in a separate article.

What happend on auth backend timeout?

When authorisation backend fails to reply in 3 seconds you get following situation:

session state what happens

not opened yet don't open but doesn't become forbidden

page 128 from 235



allowed remains allowed

forbidden remains forbidden

page 129 from 235



Authorization configurator

Starting from Flussonic 18.05 you can declare complicated authorization configuration in config file.

Now you can specify black and white list for IP addresses, tokens, useragents and countries and
include multiple parallel authorization http backends right in config file.

Configuration

Write this in config file:

auth_backendEmainE{
EEallowEipE127.0.0.1;
EEallowEipE192.168.0.1:
EEallowEipE172.16/24;

EdenyEipE8.8.8.8;
EallowEcountryERUEUS;
EdenyEcountryEGB;
EEallowEtokenEflusstestl;
EEdenyEuaE"Mozilla/5.0E(Windows;EU;EWindowsENTES.1;Een-US;Erv:1.9.2.10)";
EEbackendEnhttp://stalker-1.iptv.net/auth.php;
EEbackendEnhttp://stalker-1.iptv.net/auth.php;
}

m mp mp

allow declares white list. deny declares black list.

Flussonic goes in following order:

allow token

deny token

allow ip

deny ip

allow country

deny country

allow useragent

deny useragent

parallel backends request

if not specified allow default then deny

If any rule match, execution is terminated immediately. For example you can whitelist some IP but
blacklist token and blacklisted token will have higher priority.
Use auth://main; to apply this auth-backend to a stream.

streamEortE{
EEurlEudp://239.255.0.1:1234;
EEauthEauth:/main;

}

page 130 from 235



Examples
Multiauth HTTP + access from local network

auth_backendEmulti_localE{

EEallowEipE192.168.0/24;
EEbackendEnhttp://127.0.0.1/tv/auth;E#EiptvEplugin
EEbackendEnhttp:///stalker_portal/server/api/chk_flussonic_tmp_link.php;
}

Ban some IP addresses

auth_backendEblacklistE{
EEdenyEipE1.1.1.1;
EEdenyEipE2.2.2.2;
FEdenyEipE10.10/16;
EEallowEdefault;

}

HTTP backend and share tokens

auth_backendEmyauthE{
EEallowEtokenEfriend1;
EEallowEtokenEfriend2;

Allow some User-Agents, block other.

auth_backendEagentsE{
EEallowEuaEMAG;
EEallowEuaETVIP;

}

EEbackendEhttp:///stalker_portal/server/api/chk_flussonic_tmp_link.php;
}

page 131 from 235



Statistics service

Our clients can use our cloud service for collecting statistics and providing access to it through client
area on our website.

Enable statistics collection by clicking button on license card in client area.

After this action Flussonic will start uploading history of video sessions to our cloud service and you
will be able to see reports in real time.

Storing statistics and getting basic reports is free for our clients with active subscriptions or perpetual
licenses with access to updates.

How can it be helpful

With our service you can find out:

what devices use your customers

how many traffic was consumed

geo distribution of your customers

channel distribution between your customers

These reports can help you to understand what is really popular for your customers: you can add
interesting content and throw away not-interesting.

You can make reports for your clients: how many traffic have they consumed and how many views
were made. It will be very helpful to compare our reports with other statistics to get a better picture of
resources usage and service level.

Customer device and user agent analysis will give you good information to select content quality:
mobile phone will be ok with moderate quality of content, but TV users will be glad with FullHD.

Geo distribution of customers will help you to install streamers in proper locations.

What do we store

After enabling in client area Flussonic will send on our servers following information about each
session:

unique servers id, that is generated on initial server launch

creation time

closing time

channel/file name

user IP address

unique session identifier

auth token that was used to open session

session protocol

bytes transferred to user

user_id provided by auth backend

page 132 from 235



referer (http or rtmp) for this session
useragent for this session
Geobase lookup and useragent parsing are handled in our service.

Flussonic generates very small amount of traffic to our service, so you do not need to take it in
consideration while planning your network.

What reports do we show

Right now we can show you:

summary statistics: how many sessions were totally recorded during selected period
amount of unique sessions (read notes below)

total traffic

total view time, i.e. sum of sessions durations

You can select dates, filter by channel name (substring search), also you can filter by your servers and
user_id if you click "more filters".

Then you can select different reports in menu tabs:

On dashboard we show:

popular countries (sorted by traffic)

popular channels (sorted by sessions count)

popular protocols (sorted by traffic)
In Channels tab we show channels, sorted by traffic.
In Sessions you can see sorted by creation time sessions, organized by days.
Read comments below about Unique sessions.

In Useragents we show distribution of device types by sessions count and traffic and list of known
useragents.

In Servers you can get info about your servers and in Users info about users, identified by user_id
from auth backend.

Unique sessions

We are making online session aggegation: those that are looking similar are combined in one.

If during one day we have sessions with the same ip, channel name, protocol, user_id, referer and
useragent, then we can combine them and show in tab Unique sessions. Their total count will be
shown in Summary block in header.

Difference between Unique sessions and Sessions is that we also show amount of combined sessions.
This report can be useful to show that there may be problems with network connection of session
accounting.

page 133 from 235



Domain lock

Protection against inserting your video on other sites works only with clients that use Referer (or
something like Referer), mainly with the Flash Player. For example, iOS devices do not send Referer.

You can enable this protection in the configuration file:

liveEuser15E{
EEdomainsEmyhost.comE*.myhost.com;

}

It's important to note that it's a fairly simple protection, it will work only with simple embedding
schemes.

page 134 from 235



Authorization in Flussonic via Middleware

Middleware

A very important task that should be addressed when starting the OTT IPTV service is the limiting
access to streaming servers. According to our statistics, many people never pay attention to it, and,
consequently, overpay for the traffic: their streams are simply stolen.

Video may be distributed to everyone, but should be cleverly encrypted; keys should be distributed
indiscriminately, it is called DRM. Another method of protection is limiting distribution of the video
itself; this is called authorization.

In Flussonic, a very flexible authorization scheme is implemented that requires certain actions by
Middleware.

The scheme of work is as follows:

The client console requests the stream URL

Middleware provides a URL with a unique token

Flussonic uses this token to identify the session

Upon opening a session, Flussonic checks this token with middiware

Such a three-link scheme is needed to avoid embedding authorization into Flussonic. In turn, Flussonic
sends a request to middleware only once in a while, rather than at each request from the client.

The issue of choosing the proper token remains unsolved, and we can offer a couple of methods of
generating it.

The tokens may be generated to include all information that is necessary for authorization. For
example, a token can be generated as follows:

token=shal(secret_keyE+EipE+Estream_name)

After that, the token can be checked only if the secret_key is known. However, if an attacker tries to
use this token, he will fail, since the IP will be different.

However, this token may be stored and used indefinitely. If a user has paid the subscription fee once,
he may not pay again with this token.

Time may be inserted into the token:

timeE=Eutc()
token=shal(secret_keyE+EipE+Estream_nameE+Etime)+":"+time

Now the middlware can check token age, and if it is more than one day old, it may be safely disabled.
In practice, almost no one (except public TVs and fans of the Le Mans 24) is able to watch broadcasts
for more than 24 hours in a row.

Authorization may be combined with accounting for viewing, and a new unique token may be created
each time the used starts viewing, populating it into the database:

token=uuid()

Later, in case of subsequent calls of flussonic to the middlware, the statistics for this session may be
updated, storing the information about who watched videos and what volumes.

page 135 from 235



Securing access to streams (Authorization with
token)

In this article we will show an example of how authorization can be implemented without writing your
own backend.

The authorization system works as follows:

Your website generates a token by using a simple formula and hashes it with the secret key.
Client opens a stream that has this token.

Flussonic generates a token string (using a stream name and the client's IP address) and hashes it by
using the same secret key.

If the hash sums match, then playback is allowed. Otherwise B no access to the stream.

Configuring Flussonic for using authorization with tokens

On the Flussonic side you need to set only one string B the path to the 'securetoken’ script and set a
secret key.

The auth directive can be configured for a certain stream or as a global setting:

streamEexample-streamE{
EEurlEfake://fake;
EEauthEsecuretoken://SECRETKEY;

—

Code to a website

Flussonic must know these values to generate a token:

Client's IP address
Stream name
Secret key
Current timestamp
Code on a website should collect values to one string with the order:
string = streamname + ip + starttime + endtime + secretkey + salt
The token created as follows:
shal(string) + salt + endtime + starttime
Where:
starttime and endtime is a unixtimestamp when the token is valid. Usually, starttime is a current
time and endtime is current time + few hours.

salt is a random string.

PHP example

page 136 from 235



echoE$embed;

Rails example

config/routes.rb:

Rails.application.routes.drawEdo

E...
EEgetE'/securetoken/:id',Eto:E'securetoken#index'

end

app/controllers/securetoken_controller.rb:

classESecuretokenControllerEapp/views/securetoken/index.html.erb:

page 137 from 235



Limiting the number of sessions per user
(antitheft protection)

max-sessions

To prevent users with access to the streams from full restreaming to their servers (for example, for
further re-selling), Flussonic Media Server has an ability to limit the number of simultaneously viewed
streams. Thus, even after obtaining the access to all streams, the user may only view N streams
simultaneously, and attempts to restream all streams will result in nothing.

The limitation is made for each user with his own Userld and set with authorization.

Details

In order to limit the number of sessions to 2, in the authorization backend the following headers
should be set:

X-Userld:Esome-user-id
X-Max-Sessions:E2
And fields user_id and max_sessions via the lua backend, respectively.

If, after such authorization, a user tries to view simultaneously three streams, one of them will be
interrupted.

Ban

After a session has been banned, any attempt to reopen it within the period of
X-AuthDuration

will be rejected by Flussonic Media Server.

Therefore, if X-AuthDuration: 3600 is specified, and an extra stream is opened, after this stream has
been interrupted, it will be impossible to open this stream with the old token for one hour.

After a session has been banned, the next request from client's HLS playlist will receive a 403
Forbidden response. In case of RTSP, RTMP, the HTTP MPEG-TS socket will just be silently closed.

Each banned session is accompanied by a log entry like:

14:58:51.598EE[stream-
name]Esession_limiter:174EBanEsession_id:E>EforEuser_id:E>EandEtoken:E>EdueEtoEexceededEsessionElimit

Soft limitation

Some middlewares unable to generate new token for every new HLS stream request.
It may cause problems during switching between streams because sessions for old streams will be

page 138 from 235



marked as excess and banned.

Exactly for such cases starting from 4.5.23 version Flussonic Media Server has soft limitation mode for
sessions.

Sometimes, interruption does not happen after the first check (time is needed to understand that all
sessions are actually being used), but it occurs after the second or the third check. Thus, after extra
sessions are opened, they are usually interrupted in 30 to 90 seconds.

If you want to enable this mode, you need to specify additional soft_limitation=true key for the auth
option, for example:

streamEfoobarE{
EEauthEhttp:/localhost:8081/my_auth_script.phpEsoft_limitation=true;

}

X-Unique: true

The

X-Unique

header is deprecated, the
X-Max-Sessions

described above should be used instead.

X-Userld:Esome-id

X-Unique:Etrue

is absolutely equivalent to:
X-Userld:Esome-id
X-Max-Sessions:E1

Besides, if both X-Max-Sessions and X-Unique are specified, the X-Max-Sessions is the priority. This
way:

X-Userld:Esome-id

X-Max-Sessions:E5

X-Unique:Etrue

is equivalent to:
X-Userld:Esome-id
X-Max-Sessions:E5

Comments on versions

In version 4.5.5 and above, Flussonic is capable of allowing N number of sessions, rather than just
one. (X-Unique: true)

In versions 4.5.13 and above, the period of session re-check via the backend (X-AuthDuration) by
default is 180 seconds (3 minutes), instead of 30 seconds.

In version 4.5.15 and above, the auth_time returned from lua backend is interpreted as seconds
(instead of milliseconds in earlier versions), by analogy with X-AuthDuration of the http-backend.

page 139 from 235



How to configure two auth backend

If you are already using IPTV Middleware like IPTVportal, Stalker or anything else you can meet a
situation when you need to add some exceptions to authorization.

For example you want to share with your partner stream via password-protected link but you do not
want to modify Middleware code.

This document will show you how to solve this problem inside Flussonic Media Server by writing
simple lua auth script.

Lua auth backend

We will assume that your existing auth backend url is http://iptv.myservice.com/auth.php
You want to share link to your stream with password PASS

Create /etc/flussonic/auth.lua and tell Flussonic Media Server about it in config file:

authE/etc/flussonic/auth.lua;

auth.lua will be following:

ifEreq.tokenE==E"PASS"Ethen

EEreturnEtrue,E{}

else
EEurlE=E"http://iptv.myservice.com/auth.php?"..http.gs_encode(req)
EEreplyE=Ehttp.get(url)

EEifEreply.codeE==E200Ethen

EEEEtE=E{}

EEEEend

Here we check for token exception first and if it is not known, then go to original backend.

You can configure two different auth backends in the same manner.

Two auth backends

functionEconvert_reply(reply)

page 140 from 235



EEifEreply.codeE==E200Ethen

EEEEend

replylE=Ehttp.get("http://iptvl.myservice.com/auth.php?"..http.qs_encode(req))

status1,Eheaders1E=Econvert_reply(replyl)
ifEstatus1Ethen
EEreturnEstatusl,Eheaders1

end

reply2E=Ehttp.get("http://iptv2.myservice.com/auth.php?"..http.gs_encode(req))
status2,Eheaders2E=Econvert_reply(reply2)

returnEstatus2,Eheaders2

parallel_auth.erl

Flussonic comes with
parallel_auth.erl

that implement parallel authorization on multiple http backends

Create text file with a list of your backends in /etc/flussonic/backends.txt. Example:

root@flussonic:~#EcatE/etc/flussonic/backends.txt
http://stalkerl/stalker_portal/server/api/chk_flussonic_tmp_link.php
http://stalker2/stalker_portal/server/api/chk_flussonic_tmp_link.php
http://stalker3/stalker_portal/server/api/chk_flussonic_tmp_link.php
http://yourwebsite/auth.php

Then configure Flussonic Media Server to use parallel_auth.erl:

authE/etc/flussonic/parallel_auth.erl;

page 141 from 235



Also, you can specify ip addresses whitelist and backlist:

authE/etc/flussonic/parallel_auth.erlEwhitelist=allow.txtEblacklist=deny.txt;

Examples:

root@flussonic:/etc/flussonic#EcatEallow. txt
1.2.34
5.6.7.8
2.3.45
3.4.5.6
root@flussonic:/etc/flussonic#EcatEdeny.txt
1.1.11
2.2.2.2
3.3.33

page 142 from 235



How to deny access via IP address

It is sometimes necessary to restrict access to certain IP addresses, or to allow access to a stream only
by a specific IP address. It can be done with auth configurator.

You can setup very flexible authorization schemes with auth configurator. On this page, we will give
examples of how to block certain IP addresses, or how to skip the check of tokens for some IP
addresses. This can be useful in monitoring systems.

All the following rules can be applied to a single stream or as a global setting.
streamEortE{

EEurlEudp://239.255.0.1:5500;
EEauthEauth://blacklist;

}

Where blacklist is a name of one of the configured backend. Sure, you can configure more than one
auth rule.

Block

This settings you can set via /etc/flussonic/flussonic.conf file.

auth_backendEblacklistE{
EEdenyEipE1.1.1.1;
EEdenyEipE2.2.2.2;
EdenyEipE10.10/16;
EEallowEdefault;

}

(

The rule denies access for two certain hosts (1.1.1.1, 2.2.2.2) and whole subnet (10.10.0.0/16).

The allow default; string means allowing all connections by default.

Allow

auth_backendEwhitelistE{
EEallowEipE192.168.0/24;
EEallowEipE10.10/16;

EEallowEipES8.8.8.8;
}

The rule allows playback only for specified networks and one certain IP address. Other connections
will be blocked.

auth_backendEmultiE{

EEallowEipE192.168.0/24;

EEbackendEnhttp:///stalker_portal/server/api/chk_flussonic_tmp_link.php;

}

The rule allows playback without a token from the local network, other connections will be checked via
IPTV Middleware.

page 143 from 235



Archive access authorization

More information about archive can be found in the article here.

Authorization of access to the archive of the stream is carried out in the same way as to the stream
itself.

However exporting the archive to a file requires administrative access when file is saved to server disk.

If you use auth, your auth backend have to recieve the type and media_request parameters with every
request.

type parameter describes a protocol: hds, hls, rtmp, rtsp, mpegts and mp4.
media_request parameter gives a more detailed description of what has been requested.
Mappings betweed URL and media_request are in the table below.

The first column contains only endings of URL, so /STREAMNAME/index.m3u8 really stands for this
URL: http://flussonic-ip/STREAMNAME/index.m3u8

URL media_request

ISTREAMNAME/index.m3u8 his_live-hls_mbr_playlist

ISTREAMNAME/tracks-1,2/index.m3u8 his_live-hls_track playlist

ISTREAMNAME/mono.m3u8 his_live-hls_playlist

ISTREAMNAME/manifest.f4m hds_live-hds_manifest

ISTREAMNAME/bootstrap hds_live-bootstrap

ISTREAMNAME/mpegts mpegts_handler-request
ISTREAMNAME/index-1362504585-3600.m3u8 dvr_session-hls_mbr_playlist-1362504585-3600

ISTREAMNAME/tracks-1,2/index-1362504585-3600.m3u8 dvr_session-hls_track_playlist-
1362504585-3600

/ISTREAMNAME/mono-1362504585-3600.m3u8 dvr_session-hls_playlist-1362504585-3600
ISTREAMNAME/archive-1362504585-3600.mp4 dvr_handler-mp4-1362504585-3600
ISTREAMNAME/archive-1362504585-3600.ts dvr_stream_handler-ts_file-1362504585-3600

ISTREAMNAME/archive/1362504585/3600/manifest.f4m dvr_session-hds_manifest-1362504585-
3600

/ISTREAMNAME/archive/1362504585/3600/bootstra dvr_session-bootstrap-1362504585-3600

page 144 from 235



/ISTREAMNAME/archive/1362504585/3600/mpegts" dvr_stream_handler-ts_stream-1362504585-
3600

ISTREAMNAME/timeshift_abs/1362504585 dvr_handler-timeshift_abs-1362504585
ISTREAMNAME/timeshift_rel/3600 dvr_handler-timeshift_rel-3600

ISTREAMNAME/timeshift_abs-1362504585.m3u8 his_timeshift_playlist-hls_timeshift_abs-
1362504585

ISTREAMNAME/tracks-1/timeshift_abs-1362504585.m3u8 his_timeshift_playlist-
his_track_timeshift_abs-1362504585

/ISTREAMNAME/timeshift_abs_mono-1362504585.m3u8 his_timeshift_playlist-
his_track_timeshift_abs-1362504585

ISTREAMNAME/timeshift_rel-360.m3u8 his_timeshift_playlist-hls_timeshift_rel-360

ISTREAMNAME/tracks-1/timeshift_rel-360.m3u8 his_timeshift_playlist-hls_track_timeshift_rel-360

ISTREAMNAME/timeshift_rel_mono-360.m3u8 his_timeshift_playlist-hls_track_timeshift_rel-360

page 145 from 235



Media name aliasing

Flussonic offers very convenient feature: aliasing of stream and file names. It allows to hide name of
streams from end users: on each request the name that user provided will be rewritten to internal
name that you have configured.

So you have stream "clock" and usually you give people link http://192.168.2.3/clock/index.m3u8 Now
you can leave stream named clock in config, but give link
http://192.168.2.3/crf7930803e4e334e104/index.m3u8

There are different situations when you may want to use it:

hiding stream or file names from users, creating temporary names
managing stream names that you have shared to users, revoking embeds

To enable it you need to implement alias rewriting backend and enable it in Flussonic config:

aliaserE/opt/flussonic/privirewrite.lua;

At the moment only lua backend is accepted. You need to return false or a media name from it. Object
req with field name is provided into this backend.

If aliaser is enabled then Flussonic authorization backend will receive additional parameter:
user_name, it is an original requested media name.

Example of a rewriting backend

We will show you example of such rewriting script that will help you to understand this mechanism.

Let's imagine that we want to hide original stream name clock from user and give him temporary link.
Create file /etc/flussonic/alias.lua with:
aE=E{}

a["alias"]E=E"clock"

ifEa[req.name]E~=EnilEthen
EEreturnEa[req.name]

else

EEreturnEreg.name

end

and then enable it in /etc/flussonic/flussonic.conf:
#EGlobalEsettings:

aliaserE/etc/flussonic/alias.lua;

Now, we can access clock stream via two names:

http://flussonic/clock/index.m3u8
http://flussonic/alias/index.m3u8

page 146 from 235



You can add more aliases for your streams. Example:
aE=E{}

a["alias"]E=E"clock"
a["alias2"]E=E"clock"
a["alias3"]E=E"clock"
a["bbc-news"|E=E"bbc"
a["bbc-entertainment"]E=E"bbc"
a['BBC"]E=E"bbc"

ifEa[req.name]E~=EnilEthen
EEreturnEa[req.name]

else

EEreturnEreg.name

end

Example of a rewriting backend: crypto version

We will show you example of such rewriting script that will help you to understand this mechanism.

Let's imagine that we want to hide original stream name clock from user and give him temporary link.

As we do not want to mess with some databases, we will just encrypt with some known key original
stream name and give it to user.

For example our key will be 000102030405060708090A0BOCODOEOF (16 bytes), IV will be full of zeros
so hex value of encrypted string clock with aes ctr encryption will be: a5cd5454ec
To encrypt it in our lua script we will need to write following backend:

keyE=Ecrypto.from_hex("000102030405060708090A0BOCODOEOF")
encryptedE=Ecrypto.aes_ctr_encrypt(key,Estream_name)
returnEcrypto.to_hex(encrypted)

and to decrypt:

keyE=Ecrypto.from_hex("000102030405060708090A0B0OCODOEOF")
decryptedE=Ecrypto.aes_ctr_decrypt(key,Ecrypto.from_hex(reg.name))
returnEdecrypted

Ok, this is nice, but this new stream name doesn't look like something unique, it will be the same.
Let's add some random 4 bytes salt to our stream name. Now encrypted "1234" + "clock" will be:
f7930803e4e334e104

keyE=Ecrypto.from_hex("000102030405060708090A0BOCODOEOF")
encryptedE=Ecrypto.aes_ctr_encrypt(key,E"12345"..stream_name)
returnEcrypto.to_hex(encrypted)

Something different. Now on our website we need to add 4 random bytes before our stream name
and then encrypt. Our alias rewriting backend will look rather simple:

decryptedE=Ecrypto.aes_ctr_decrypt(crypto.from_hex("000102030405060708090A0BOCODOEOF"),Ecrypto.fro
m_hex(reg.name))

page 147 from 235



returnEstring.sub(decrypted,5)

page 148 from 235



HTTP API to Flussonic Media Server

Authentication and authorization

Flussonic provides the option to receive information and manage certain functionality over HTTP.

Requests for information can be protected by using view_auth user password; directive in the
configuration file.

Requests for modification of a state and settings can be protected by using the edit_auth user
password; directive in the configuration file /etc/flussonic/flussonic.conf.

With authentication active you need to use login and password in HTTP Basic Auth format to access
HTTP API.

Server information (server)

Information about Flussonic server.

URL:E/flussonic/api/server
Example:Ehttp://example.flussonic.com:8080/flussonic/api/server
Parameters:Enone

Response:EJSON like

EEEE"version":E"4.6.1" E//EFlussonicEserverEversion
EEEE"hostname":E"streamer.example.com",E//Ehostname
EEEE"uptime":E43373,E//ECurrentEFlussonicEuptimeEinEseconds
EEEE"total_clients":E1592,E//ETotalEclientsEnumber
EEEE"total_streams":E100,E//ETotalEstreamsEnumber
EEEE"online_streams":E95,E//ETotalEactiveEstreamsEnumber
EEEE"input_kbit":E1234,E//ECurrentEinboundEspeed
EEEE"output_kbit":E123456E//ECurrentEoutboundEspeed

}

The list of streams, their clients and state (media)

State and configuration of streams, number of clients.
URL:E/flussonic/api/media

Parameters:E none

Reply:EJSON like

IllistEofEstreams

™

EEEE"entry":E"stream",
EEEE"value":E{

page 149 from 235



EEEEEEEE "retry_count":E0,E//numberEofEautomaticEretries

page 150 from 235



Stream information (media_info)

Information about specific stream: width, height, tracks.

URL:E/flussonic/api/media_info/STREAM_NAME

Parameters:E

STREAM_NAME N stream name.
(required)

Response:EJSON like

E"width":1024,EEE//imageEwidth
E E"height":576,EEE//imageEheight
EEEE"streams":[EEE//listEofEelementsEofEthisEstream

EEEEEEEE{

m |'|'|>"""
)

page 151 from 235



EEEEEEEEEEEE"track_M":1EEE//trackEnumber.EelementsEareEsortedEonEthisEfieId

EEEEEEEE}
EEEE]
}

Clients authorized to watch a stream can request its info:
curlEnttp://192.168.2.3:8080/ort/media_info.json

{"width":320,"height":240,"streams":[{"size":"320x240","content":"video","codec":"h264","bitrate":115,"trac
k_id":1,"fps":25.0,"width":320,"height":240,"pixel_width":320,"pixel_height":240,"sar_width":1,"sar_height":1,

"length_size":4,"profile":"Baseline","level":"2.1"},{"content":

}

audio","codec":"aac","bitrate":25,"track_id":2}]

Information about original stream (input_media_info)

Information about the original incoming stream before it is transcoded.
URL:E/flussonic/api/input_media_info/STREAM_NAME
Parameters:E
STREAM_NAME N stream name.
(required)
Response:EJSON like

m

EEE"height":E240,
EEEE"streams":E[

EEEEEEEEEEEE"pixel_ Wldth" E320,

page 152 from 235



EEEEEEEEEEEE"track d"'E"vl",
EEEEEEEE}

EEEE],
EEEE"width":E320
}

If no transcoding is performed then API responds with an error:

—~

EEEE"error":E"no_transcoder"
}

Stream quiality (stream_health)

HTTP status code indicates when recent frames were registered in the stream.
URL:E/flussonic/api/stream_health/STREAM_NAME
Parameters:E
STREAM_NAME N stream name
(required)
Response:
HTTP 200 N STREAM_NAME exists and the last frame in it is relatively recent (less than one second
ago)
HTTP 424 N stream exists but there are no recent frames.

URL is useful for monit, eg:

checkEprocessEflussonic

startEprogramE=E"/etc/init.d/flussonicEstart"
stopEEprogramE=E"/etc/init.d/flussonicEstop"
ifEfailedEhostElocalhostEportE8080

protocol EHTTPErequestE"/flussonic/api/stream_health/cam0"EthenErestart
ifESErestartsEwithinE5EcyclesEthenEtimeout

List of active files (files)

A list of currently active files and the number of clients that watch them.

page 153 from 235



URL:E/flussonic/apiffiles
Parameters:E none

Response:EJSON like

—~

EEEE"files":[EEE//listEofEfilesEthatEareEcurrentlyEactive

EEEEEEEEEEEE url™: pr|v/|rmp4 ,EEEE//pathEonEHDDEorEanEexternalEstorage
EEEEEEEEEEEE "bytes_out":1792522,EEEE//numberEofEtransmittedEbytes
EEEEEEEEEEEE bytes in":1792522, EEEE//numberEofEreadEbytes

EEEEEEEE}
EEEE]
}

Number of open sessions (sessions)

Number of open sessions, that is, connections between clients and server. If client pauses playback or
automatic video playback start (autoplay) is disabled, then after a while the session will be closed.

URL:E/flussonic/api/sessions
Parameters:E none
Response:EJSON like

EE"sessions":[

(I
m

EEEEEEEEEEEE "name": vodllrmp4 ,EEEE//internalEidentifierEwithEaEprefix
EEEEEEEEEEEE"created _at": 1396588629135 EEEE//sessmnEstartEtlme
EEEEEEEEEEEE "type™:"hds", EEEE//streamEtype

EEEEEEEEEEEE "bytes_sent":828010, EEEE//theEnumberEofEtransmlttedEbytes
EEEEEEEE}

EEEE]
}

If you want to display a list of connections for a single file, you may add a name of this stream to a
query string: /flussonic/api/sessions?name=vod/ir.mp4

page 154 from 235



List of open sessions for a specific stream
(sessions+stream_name)

A list of sessions that are open to the specified stream.
URL:E/flussonic/api/sessions?name=STREAM_NAME

Parameters:E

STREAM_NAME N stream name.
(required)

Response:EJSON like

EEEEEEEEEEEE//uniqueEsessionEidentifier
EEEEEEEEEEEE" |p "127.0.0.1" EEEE//chentEIP
EEEEEEEEEEEE type "hls" EEEE//typeEofEthlsEstream

EEEEEEEE}
EEEE]
}

Close session (session_close)

To close several active sessions, you need to pass a list of their identifiers as POST request body. Use
\n as delimiter.

URL:E/flussonic/api/close_sessions

Parameters:E

HTTP request payload N list of session identifiers joined by \n
(required)

Response:Ecode 200

Playlist status information

You can request information about the state of the playlist of the specified stream.
URL:E/flussonic/api/playlist STREAM_NAME
Example:Ehttp://example.flussonic.com:8080/flussonic/api/playlist/example_stream

page 155 from 235



Parameters:E

STREAM_NAME N the name of a stream that contains the playlist
(required)

Response:EJSON like

m

EEE"current_entry":"vod/ir.mp4",EEE//TheEcurrentlyEplayedEitem
EEE"current_type":"file",EEE//TheEtypeEofEtheEcurrentlyEplayedEitem

EEE 'du
EEE"position":5.22e4EEE//CurrentlyEplayedEpositionEinsideEtheEcurrentEitem, EinEmilliseconds

m> [T

ration™:null, EEE//DurationEofEtheEcurrentEitem, EinEmilliseconds('null'EstandsEforE'undefined’)

‘w-'m,

About server-side playlists.

Recordings map (dvr_status)

Recordings map for particular day, consisting of segmengs and seconds.
URL:E/flussonic/api/dvr_status/YEAR/MONTH/DAY/STREAM_NAME

Parameters:E

STREAM_NAME N stream name.
(required)
YEAR N year
(required)
MONTH N month
(required)
DAY N day
(required)
Response:EJSON like

|T|)

EE//listEofEblocks

EEEEEEEE"path":"2014/04/07/10/00", EEEE//pathEofErecordlngEonEhdd
EEEEEEEE bitrate": 2052, EEEE/N"#$%&#

page 156 from 235



EEEE{"timestamp":1396865400,"path":"2014/04/07/10/10","bitrate":1964,
EEEE"segments":[E{"second":0,"utc":1396865400,"duration": 7194,
EEEE"size":1800664,E"bitrate™:2002,"jpeg":"2014/04/07/10/10/00.jpg"}]}

List of VOD files (list_files)

List of available files for a specific prefix and path.

URL:

[flussonic/api/list_files?prefix=VOD_LOCATION&path=VOD_ROOT&subpath=SUB_PATH_IN_VOD_ROOT
&from=FirstName&Ilimit=COUNT

Parameters:

VOD_LOCATION N VOD prefix.

(required)

Web interface: the list of prefixes is displayed on the main page in Files (VOD) section.
Configuration file: file vod {...};.

VOD_ROOT N VOD root.

(required)

Web interface: The list of sources (storages) for a prefix is displayed in corresponding tab of Files
(VOD) section. New source can be added in New Path field.

Configuration file: "path" elements in file vod { path priv };.

VOD root can be an address of swift storage and start with swift://.

SUB_PATH_IN_VOD_ROOT N location inside VOD_ROOT.
(required)
For root of a storage it equals /

FirstName N list of files that starts from this name. You can just specify the beginning of the file
name.

(optional)

Reply will not contain FirstName itself.

COUNT N maximum number of files in the query.

(optional)

If it is used with FirstName, a reply will contain COUNT files

starting with FirstName (excluding FirstName itself).

Response: JSON like

—~

EEEE"files":[EEE//listEofEfiles

page 157 from 235



EEEEEEEE{"name":"10.fla","type":"file","prefix":"vod"}
EEEE]
}

Save new configuration file (save_config)

To update configuration, you need to pass the text of the new configuration file as POST request body.
An important difference from update_config is that the new configuration is not only applied to a
running server, but also replaces the existing configuration file at /etc/flussonic/flussonic.conf.

URL: /flussonic/api/save_config

Parameters:
HTTP request payload N text of the new configuration file (required).
For example, for curl, this parameter is --data-binary:

curl ... --data-binary '# Global settings:\nhttp 80;\nrtsp 554;\nrtmp 1935;\npulsedb
/var/run/flussonic;'

Response: true if the request was processed successfully

Update configuration file (update_config)

To update configuration, you need to pass the text of the new configuration file as POST request body.
An important difference from save_config in that the new configuration is applied to a running server,
but the configuration file on disk does not change.

URL: /flussonic/api/update_config

Parameters:
HTTP request payload N text of a new configuration file
(required)
For example, for curl, this parameter is --data-binary:

curl ... --data-binary '# Global settings:\nhttp 80;\nrtsp 554;\nrtmp 1935;\npulsedb
Ivar/run/flussonic;'

Response: true if the request was processed successfully

Remove a stream (config/stream_delete)

To delete a stream, you need to pass its name as the POST request body.
URL.: /flussonic/api/config/stream_delete

Parameters:

HTTP request payload N stream name

(required)
For example, for curl, this parameter is --data-binary:
curl ... --data-binary 'mystream’

Response: {"success":true} if the request was processed successfully

page 158 from 235



Create and update a stream (config/stream_create)

To update stream configuration, you need to pass the text with the stream settings as POST request
body. It is exacly the same text you would use to add a new stream to the configuration file. Warning:
At the moment there is no separate config / stream_update command, so the existing stream can be
updated with theconfig / stream_create query.

URL.: /flussonic/api/config/stream_create

Parameters:
HTTP request payload N text of a stream configuration
(required)

For example, for curl, this parameter is --data-binary:
curl ... --data-binary 'stream mystream { url hls://myvideo.com/mystream; dvr /storage 1d 1G; ¥

Response: {"success":true} if the request was processed successfully

Reload configruation file (reload)

You must perform this query to apply the new configuration to a running server if you have made
changes to the configuration file /etc/flussonic/flussonic.conf.

URL: /flussonic/api/reload
Parameters: none
Reply: true if the request was processed successfully

Example for curl: curl -u admin:passO0 http://flussonic:8080/flussonic/api/reload

Restart a stream (stream_restart)

Full restart of a specific stream. May be useful in a case of broken source.
URL: /flussonic/api/stream_restart/STREAM_NAME
Parameters:

STREAM_NAME N stream identifier

(required)

Response: true if the request was processed successfully

Switch stream source (stream_switch_source)

Use new source for the stream.
URL: /flussonic/api/stream_switch_source/STREAM_NAME?url=SOURCE_URL
Parameters:

STREAM_NAME N stream identifier.

(required)

SOURCE_URL N New source URL.
Must be present among configured sources of the stream.
(required)

page 159 from 235



Enable DVR module (dvr_enable)

Option dvr or dvr_offline must be specified in stream settings.
URL: /flussonic/api/dvr_enable/STREAM_NAME

Parameters:

STREAM_NAME N stream identifier
(required)

Response: true if the request was processed successfully

Disable DVR module (dvr_disable)

URL: /flussonic/api/dvr_disable/STREAM_NAME

Parameters:

STREAM_NAME N stream identifier
(required)

Response: true if the request was processed successfully

Information about servers in cluster (cluster_servers)

URL: /flussonic/api/cluster_servers
Parameters: none

Response: JSON like

{

EEEE"streamer-2":E//streamerEname

}

page 160 from 235



Events API

Events in Flussonic

Flussonic has a system of internal events with routing and handling, and convenient and flexible tools
to configure it.

Events are initiated in different parts of the system and can be used in different scenarios.
To configure event-related settings, add into the Flussonic configuration file a directive notify and the
option sink where you define the receiver of events:
To use your custom handler, specify the path to the handler in sink.
To write event to a log file, specify the path to the file in sink.
Then use various options to filter events before they come to a handler or log.

On this page:

Configuring event logging
Configuring event handlers
Event filtering

The list of available events

Examples of configuring email notifications

Configuring event logging

In addition to the main log, Flussonic allows you to create as many log files as you need and to log
events according to your filtering settings.

To write events to a custom file, add the notify directive and use the sink log:// option to specify the
file, for example:

notifyElog_nameE{

EEEEsinkElog://log/crash.log;
EEEEverboseEdebug;
}

Where:

log_name N just the setting's name. It's good to give it a meaningful name.
sink N the file where event information is logged.

verbose N the level of logging according to event importance. Can be debug (the most detailed
logging), info, or alert (only serious events).

Excluding events from logs

To exclude some types of events, use the except option. For example, the following configuration will
not write to the log all events concerning streams (and write other events, such as Flussonic server
events):

notifyElog_nameE{
FEEEsinkElog://log/crash.log;

EEEEexceptEmedia=*;

page 161 from 235



EEEEverboseEdebug:
}

Configuring event handlers

Each event handler can be declared in config:
notifyEhandler_nameE{
EEEEsinkEnhttp://backend.local/notify.php;

}

Such configuration creates an event handler with the name handler_name and it sends ALL events to
HTTP URL http://backend.local/notify.php.

In this configuration all Flussonic events will be send in JSON format as a list of objects. On a high
loaded system it can generate enormous amount of events most of which are not required.

We can reduce event traffic by better configuration:

notifyEhandler_nameE{

EEEEsinkEnhttp://backend.local/notify.php;
EEEonlyEevent=stream_started,stream_stopped,source_ready,source_|lost;

-~ m

This configuration will send only four specific events to this handler.

Event handler calls are synchronous: an event will not be sent to the handler if the handler hasn't
handled the previous event batch.

The event configuration block supports the following configuration options:

sink  The specification of the handler. It can be http://URL, https://URL, path_to_lua_script.lua

only The white list of limitations. You can specify several key=value or key=valuel,value2 options on
each only line.  You can filter events by their event field, by media field or any other like country or
ip. Usually it is event and media. You should read more explicit explanation of this only behaviour.

except The black list of limitations. Events matched by any of except fields will not be passed to
handler.

buffer  You can use false to imitate the old behaviour of pre-4.6.14 versions. But we don't
recommend using it.

All other configuration options in this block will be passed to the specified sink handler. In a LUA script
they can be accessed via the args table. When using HTTP backend you pass them along with other
parameters.

Here goes some extra configuration options:

sign_key  You can specify signature key for HTTP event sink. When Flussonic will prepare HTTP POST
with JSON body, it will add this secret key to then end of body, make SHAL hash from it and add it in
hex formasa  header X-Signature. This can be used for verifying that it is a Flussonic posting

events.

Event filtering

You can pre-filter events before passing them to handlers. It is very important mechanism, try to use

page 162 from 235



it, because it reduce load on your event handler. Each event is prefiltered in the emitter thread before
being passed to handler.

Here goes rules for filtering:

if ANY except directive fully matches event, it is dropped and not sent to handler;
if there are no only directives, events are sent to handler;
if there are only directive then event is passed to handler if ANY directive fully matches the event.

Full match of event and directive means that ALL key=value pairs in directive are equal to values in
event. If directive has key=valuel,value2,value3 pair, then it means that event MUST have ANY of
these values to match this directive.

Examples:

only event=stream_started; matches {event: "stream_started", media: "cbc"}
only event=stream_started,stream_stopped; matches {event: "stream_started", media: "cbc"}

only event=stream_started,stream_stopped media=tnt; NOT matches {event: "stream_started",
media: "cbc"}

only event=stream_started media=chc group=news; NOT matches {event: "stream_started", media:
IleCII}

The list of available events

Here is a list of known events:

server_started sent when server has started

listener_start  flussonic is listening on some port for protocol
listener_failure  flussonic has failed to listen on port
config_reloaded config has reloaded

session_opened session was opened

session_closed session was closed

file_opened file was opened

file_closed file was closed

stream_started stream has started

stream_stop  stream is told to stop via API

stream_stopped stream has stopped

stream_reconfigured  stream has reloaded configuration
stream_motion_started motion event has appeared on stream (for IP cameras)

stream_motion_stopped motion event has been closed on stream

page 163 from 235



source_ready stream source has received first frames

stream_media_info  stream media info has changed

source_lost stream source considered to be lost and needs restarting

source_switch  stream source has been switched to another

frames_timed_out A stream's source has stopped sending frames (but it is not restarted yet)
frames_restored A stream's source has resumed sending frames

stream_backup  backup file started playing while source is lost

publish_started publishing to stream has started

publish_stopped publishing to stream has finished and you can get lot of valuable information from
this event

push_started stream has started pusher to another source

stream_jpeg new jpeg thumbnail has been generated

dvr_new_fragment new DVR fragment has been recorded on disk
dvr_deleted_fragments old fragments has been deleted from DVR

dvr_new_blob  new hour blob has been opened for recording video to DVR
stream_force_close_gop error in stream: invalid timestamps are coming or too low FPS

stream_rt_sync stream had to resync timestamps. May be indication of stream errors if happens too
often.

stream_broken_source stream is refusing to read from current source and decided to completely
restart

dvr_replication_started DVR replication started
dvr_hour_replication_started DVR replicating hour
dvr_hour_replication_done DVR hour done
dvr_replication_progress DVR replication in progress

dvr_replication_done DVR replication done

Examples of configuring email notifications

Let's learn what you can do with events system. For example, let's receive email notifications if a

page 164 from 235



stream is down.

The simplest configuration will be:

notifyEno_videoE{
EEEonlyEevent=stream_stopped,source_lost;

m mp

EEEsinkE/etc/flussonic/no_video.lua;

(I

EEEfromEflussonic@streamerl.my.cdn;
EEEtoEadmin@my.cdn;
EEEviaEsmtp://127.0.0.1:587;

=~ m m

This configuration is enough unless you want to filter streams here.

What no_video.lua can do:

bodyE=E"SourceElostEonEfollowingEstreams:E\n"

forE_,EeventEinEpairs(events)Edo
EEEEbodyE=Ebody.."EE"..event.media.."\n"
end

mail.send({fromE=Eargs.from,EtoE=Eargs.to,EsubjectE=E"SourceElost",EbodyE=Ebody?})

You need to install the Sendmail utility to send mail correctly:

apt-getEinstallEsendmail

Make sure that Sendmail listens on the port specified in the configuration file:

netstatE-Intp

tcpEEEEEEEEOEEEEEEOE127.0.0.1:587EEEEEEEEEEE0.0.0.0:*EEEEEEEEEEEEEEELISTENEEEEEE3507/sendmail

Specify REAL domain name as the hostname of the server:

hostname
streamerl.my.cdn

page 165 from 235



SQL API

You can connect and request data via MySQL protocol, like with any original MySQL server. Turn on
this feature by enabling mysql port in the config file (or in the web interface):

mysqlE3306;

Now you can use your admin login (edit_auth and view_auth) to connect using mysql client or any
other sql library of your choice. Database name is flussonic:

mysqlE-uEadminE-hE127.0.0.1E-pEflussonic

mysql>EshowEtables;

4ErowsEinEsetE(0.00Esec)

mysql>EselectE*EfromEstreams;

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

1ErowEinEsetE(0.00Esec)

Similarly, you can access any other table, for example, the files table.

Available tables

streams information about active streams
files information about open files
sessions information about open sessions

sessions_history information about history of sessions

page 166 from 235



stats information on various metrics

dvr_status statistics on dvr recording for a particular period of time. Stream name and time (utc) are
required parameters.

Advices
dvr_status

When requesting dvr_status table, you have to use stream name (name) and time (utc).

If you miss one of this parameters, you will always get "ERROR 1210 (HY000): name and utc conditions
are required" in the MySQL client.

Quote charactes are important too. Value of name should be wrapped in single quotes, &nd utc
should be used without quotes at all.

For example: select * from dvr_status where name="mystream' and utc > 1411084801,

If you use invalid quotes, you will always get "Query OK, 0 rows affected (0.00 sec)" in the MySQL
client.

Also please note that you can't use exact equality (utc=1411084801), but you have to query some
range (utc > 1411084801).

At the moment, the statistics can be stored for about a day. This time can not be increased. Perhaps in
future versions of the Flussonic Media Server we'll implement long-term storage, for year or so, but at
the moment this feature is not available.

Relationship to MySQL Database Server

FAQ: Should I install/uninstall Oracle MySQL Database Server, or manually avoid conflicts with it, or |
can just add MySQL API support to the config file and that's all?

No. Install MySQL-Server is not necessary.

Add MySQL API support to the configuration file by specifying the port that the Flussonic Media Server
will listen to.

Don't forget to use port that isn't bound by your native db (3306 is a default port for MySQL, so it's
better to use something different).

Flussonic Media Server doesn't use real native db (mysql server or anything), it's just an emulation
module inside Flussonic Media Server, that can parse simple SQL queries.

Please note that because it's not an actual database, you can't use PHPMyAdmin or something like
that for viewing that tables, you can access it only using simple SQL queries inside mysql client, library
etc.

page 167 from 235



Cluster management via SQL API

Flussonic Media Server allows you to manage streams (create, update, delete and select) across whole
cluster of servers via single entry point.

In this article we will explain how to do it with all details.

Important! You do not need to install MySQL server.

Flussonic Media Server does not work with MySQL server.

Flussonic Media Server behaves as if it is MySQL server. When you specify mysqgl 3306; in your config

file, Flussonic Media Server will bind to this port and work as a MySQL server (with specific
functionality).

Do not install MySQL server!

Usually a MySQL client tries to connect to MySQL server via a Unix domain socket. When you tell it to
connect to localhost, it tries to open something like /tmp/mysql.sock or whatever else. Flussonic
Media Server listens strictly on a TCP socket, so when you try to do it on localhost, you need to use
127.0.0.1. Usually it is an alias, but in case of MySQL client, there is a difference.

Servers in a cluster

First we'll tell you about the concept of servers in a cluster. Each Flussonic Media Server knows about
itself, and to know about other servers in a cluster you must use the directive peer.

Servers in a cluster use cluster_key to authorize on each other. You need to declare cluster_key in the
configuration file to specify the cluster key on the current Flussonic Media Server. Adding cluster_key
to server directive means telling Flussonic which cluster_key it must use to connect to another server.
By default Flussonic Media Server uses its cluster key to connect with peers.

If you have two servers: srvOl.cdn.local and srv02.cdn.local, then you can configure them in the
following way:
srv0l.cdn.local:

httpE8O0;

mysqlE3306;
edit_authEadminEsecretpass;
cluster_keyEmcXpNJyZX3mSES3;
peerEsrv0l.cdn.local;
peerEsrv02.cdn.localE{
EEcluster_keyEwjFxSiSGGEC6e2;
}

srv02.cdn.local:
httpE8O0;
cluster_keyEwjFxSiSG6EC6e2;

When you configure it in such a way, srv01 will periodically ping srv02 and fetch the status of streams
on it.

Now let's take a look at how you can set up the same confguration with SQL API:

page 168 from 235



$EmysqlE-uEadminE-psecretpassE-hEsrv01.cdn.localEcluster
mysql>EINSERTEINTOEpeersE(hostname,cluster_key)EVALUESE('srv02.cdn.local', wjFxSiSG6EC6e2";
QueryEOK,E1ErowEaffectedE(0.36Esec)

mysql>ESELECTE*EFROMEpeers;

+ + + + + + + +
|EhostnameEEEEEEEEEEEEE|EavailableE|EidEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE|EportE|Ecluster_keyEEEE|Eupt
+ + + + + + + +

|ElocalhostEEEEEEEEEEEE|EEEEEEEEE 1E|Ecd30c5a4-3dda-4acl-a2eb-
a9h765918082E|EEESOE|EmcXpNIyZX3mSE3E|EEENULLE|EEEEOE|

+ + + + + + + +

Now you get the same configuration as described above. If you see a value in id, it means that the
current Flussonic Media Server was able to connect to the remote Flussonic Media Server and
establish peering. You will see the uptime and even load (output bandwidth utilization in percents).

You can delete this server from your configuration:

mysql>EDELETEEFROMEpeersEWHEREEhostname="srv02.cdn.local’;
QueryEOK,E1ErowEaffectedE(0.68Esec)

Now this server is deleted and you will not see streams from this server.

Stream management

You can get access to all streams on all your servers via a single place by using a regular SQL API.

Flussonic allows you to store some metadata directly in a stream confguration section in the file
flussonic.conf, so perhaps you don't need to work with the streams table in your management
system.

Stream is identified by the name column and have column server with the hostname of the server on
which the stream is "located".

If you don't specify the server when creating a stream, it will be created on the server to which you are
connected. If you specify the server, the stream will be created on the specified server.

You don't need to specify the server when you update, delete, or select a stream, because Flussonic
Media Server will automatically find out on which server a stream is running.

The structure of the Peers table

The peers (servers in a cluster) table contains the following columns:

Field Type Description

hostname string

page 169 from 235



available bool

id string

port integer

https_port integer

rtmp_port integer

rtsp_port integer

cluster_key string

uptime integer

meta string

bandwidth_usage integer outbound traffic, % from total bandwidth

cpu_usage integer CPU usage in %

memory_usage integer memory usage, % from RAM

total_clients integer

online_streams integer

page 170 from 235



total_streams integer

version string

build integer

is_remote bool

is_peer bool

is_source bool

error string

fetched_at integer

vsaas bool internal

vsaas_endpoint string internal

rproxy bool internal

rproxy_streampoint_key string internal

rproxy_endpoint_auth string internal

camera_alarm integer

camera_alarm_address string

page 171 from 235



camera_alarm_patterns string

The structure of the Streams table

The streams table is rather wide because each stream has a lot of information.

Field Type Description

name string stream name

title string mpegts title

provider string mpegts title

static bool static / ondemand

pulse_off bool exclude a stream from resource usage statistics

position integer position (for vod files)

disabled bool

retry_limit integer

source_timeout integer

password string

publish_enabled bool

prefix string http://yourwebsite.com/E

max_bitrate integer

page 172 from 235



on_publish string

motion_detector_enabled bool

motion_detector_notify string

motion_detector_tags string

transcoder string

dvr_root string

his_off bool on / off protocol
hds_off bool on / off protocol
rtmp_off bool on / off protocol
rtsp_off bool on / off protocol
dash_off bool on / off protocol
mpegts_off bool on / off protocol
webrtc_off bool on / off protocol
m4s_off bool on / off protocol
m4f_off bool on / off protocol
mseld_off bool on / off protocol

url_prefix string

segment_count integer

page 173 from 235



segment_duration integer

prepush integer

backup string

add_audio_only bool

max_sessions integer

thumbnails_enabled bool

thumbnails_url string screenshots address (jpeg)

clients_timeout integer

push string

external_cache string internal

auth_url string

domains string

allowed_countries string

disallowed_countries string

page 174 from 235



glue_ts bool

vsaas bool internal
iptv bool internal

comment string

coordinates string internal
postal_address string internal
owner string internal
auth_token string internal
mobile_token string internal
access string internal
onvif_url string internal
onvif_profile string internal
can_ptz bool internal
dvr_protected bool internal
agent_id string internal
agent_pin string internal
agent_key string internal
agent_model string internal
agent_serial string internal
registered_at integer internal
program_id integer internal

stream_id integer internal

page 175 from 235



extra string internal

dvr string

dvr_no_index bool not create idx index

urls string

cluster_ingest bool

alive bool

remote bool

source_hostname string

lifetime integer internal

start_running_at integer

ts_delay integer internal

retry_count integer

client_count integer

last_dts integer internal

last_dts_at integer internal

last_access_at integer

page 176 from 235



input_error_rate integer internal

bytes_in integer

bytes out integer

out_bandwidth integer

bufferings integer internal

bitrate integer

source_error string source error

url string

current_agent_id string internal
agent_status string internal

server string

published_from string publication source IP address
published_via string publication format
dvr_only bool internal

running_transcoder bool

dvr_replication integer

dvr_replication_running bool

page 177 from 235



You can see that not all configuration options are here yet, we are working on it.

Creating streams

When you first launch a new cluster, you have no streams:

mysql>EselectE*EfromEstreams;
EmptyEsetE(0.00Esec)

Here and later we assume that you have configured the path to VOD on all servers:
fileEvodE{

EEpathEpriv;

}

and the file bunny.mp4 is located in this priv path.

Let's create a stream:

mysql>EinsertEintoEstreamsE (name,urls,dvr)EvaluesEE('bunny1', file://vod/bunny.mp4', moviesE2dE20G");
QueryEOK,E1ErowEaffectedE(0.02Esec)

mysql>EselectEname,static,urls, lifetime,serverEfromEstreams;

+ + + + + +

|EnameEEE|EstaticE|EurlsEEEEEEEEEEEEEEEEE|ElifetimeE|EserverEEEE|

+ 4+ + + + +
T T T T T T

|Ebunny1E|EEEEEE1E|Efile://vod/bunny.mp4E|EEEE27029E|ElocalhostE|

+ + + + + +

1ErowEinEsetE(0.01Esec)

Now let's make our cluster work:

mysql>EinsertEintoEstreamsE (name,urls,dvr,server)EvaluesEE(‘bunny?2', file://vod/bunny.mp4','moviesE2dE20G",'s
rv02.cdn.local’);
QueryEOK,E1ErowEaffectedE(0.03Esec)

mysql>EselectEname,static,urls, lifetime,serverEfromEstreams;

+ + + + + +
|EnameEEE|EstaticE|EurlsEEEEEEEEEEEEEEEEE|ElifetimeE|EserverEEEEEEEEEE]|
+ + + + + +

+ 4 + + + +
T T T T T T

2ErowsEinEsetE(0.00Esec)

This demonstrates that you can create streams on all your servers via a single entry point. You need
only to specify the server where you want to create a stream.

Updating streams

When updating stream information, you don't need to specify the server explicitly. It is very
convenient because you don't need to remember where your stream is.

page 178 from 235



mysql>EupdateEstreamsEsetEurl_prefix="http://srv02.cdn.local'EwhereEname="bunny?2’;
QueryEOK,E1ErowEaffectedE(0.02Esec)

mysql>EselectEname,static,urls, lifetime,server,url_prefixEfromEstreams;

+ + + + + + +

|EnameEEE|EstaticE|EurlsEEEEEEEEEEEEEEEEE|ElifetimeE|EserverEEEEEEEEEE|Eurl_prefixEEEEEEEEEEEEE]
+

+ + + + + +
|Ebunny1E|EEEEEE1E|Efile://vod/bunny.mp4E|EEE429009E|ElocalhostEEEEEEE|ENULLEEEEEEEEEEEEEEEEEEE]|
|Ebunny2E|EEEEEE1E|Efile://vod/bunny.mp4E|EEE319980E|Esrv02.cdn.localE|Ehttp:/srv02.cdn.localE|

+ + + + + + +

2ErowsEinEsetE(0.01Esec)

Flussonic Media Server "knows" on what server a stream runs, so it will not require specifying it from
you.

However, within a cluster, the name is not a unique field. If you duplicated stream names on several
servers, you must specify the server on which you want to update a stream.

Deleting streams

Let's get rid of one of these streams:

mysql>EdeleteEfromEstreamsEwhereEname="bunny1’;
QueryEOK,E1ErowEaffectedE(0.02Esec)

mysql>EselectEname,static,urls, lifetime,server,url_prefixEfromEstreams;

+ + + + + +. +
T T T T T T T

+ + + + + + +
|Ebunny2E|EEEEEE1E|Efile://vod/bunny.mp4E|EEE593231E|Esrv02.cdn.localE|Ehttp://srv02.cdn.localE|
+ + + + + + +

1ErowEinEsetE(0.01Esec)

and then delete all other streams:

mysgl>EdeleteEfromEstreamsEwhereEname="bunny2";
QueryEOK,E1ErowEaffectedE(0.02Esec)

mysql>EselectEname,static,urls, lifetime,server,url_prefixEfromEstreams;

EmptyEsetE(0.00Esec)

Flussonic Media Server follows the same rule for deletion as for updating or selecting. If you have a
single stream in a cluster, Flussonic will find it and modify the configuration file of that remote server.

Migration of streams between servers

This is where magic begins. If you configured a stream on one server, all you need to do is to specify
another server for it, and the migration will be performed automatically:

mysql>EinsertEintoEstreamsE (name,urls,dvr,server)EvaluesEE('bunny?2', file://vod/bunny.mp4','moviesE2dE20G",'s

page 179 from 235



rv02.cdn.local’);
QueryEOK,E1ErowEaffectedE(0.03Esec)

mysql>EselectEname,static,urls,lifetime,serverEfromEstreams;

+ + + + + +
|EnameEEE|EstaticE|EurlsEEEEEEEEEEEEEEEEE|ElifetimeE|EserverEEEEEEEEEE]|
+ + + + + +

|Ebunny2E|EEEEEE1E|Efile://vod/bunny.mp4E|EEEEE3889E|Esrv02.cdn.localE|
+ + + + + +

1ErowsEinEsetE(0.00Esec)

mysql>EupdateEstreamsEsetEserver='srv03.cdn.local'EwhereEname="bunny?2’;
QueryEOK,E1ErowEaffectedE(0.02Esec)

mysql>EselectEname,static,urls, lifetime,serverEfromEstreams;
+ + + + + +

+ 4 + + + +
T T T T T T

|Ebunny2E|EEEEEE1E|Efile://vod/bunny.mp4E|EEEEE3989E|Esrv03.cdn.localE|

+ 4+ + + + +
T T T T T T

1ErowsEinEsetE(0.00Esec)

You can move streams from any server to any other one. Flussonic Media Server will create them on
the new server and delete on the old.

GPU table

The gpu table contains information about the current GPU usage.

Query examples:

SELECT * FROM gpu

MySQLE[cluster]>EselectE*EfromEgpu;
+ + + + + + + + +

|EserverEE|EhwidE|EpowerE|EtemperatureE|EmemoryE|EencoderE|EdecoderE|EsmEEE|
+ + + + + + + + +

+ + + +. + +. + + +
T T T T T T T T T

2ErowsEinEsetE(0.00Esec)

SELECT * FROM gpu ORDER BY sm DESC - sort data by CUDA usage
mysql>EselectE*EfromEgpuEorderEbyEsmEdesc;

+ 4+ + + + + + + +
T T T T T T T T T

|EserverE|EhwidE|EpowerE|EtemperatureE|EmemoryE|EencoderE|EdecoderE|EsmEEE|

+ + + + + + + + +

page 180 from 235



Description of colums:

server - hostname of the server

hwid - gpu ID, the same ID is used in transcoder settings (deviceid=1)
power - current power usage in watts

temperature - temperature in jC

memory - memory usage in %

encoder - encoder usage in %

decoder - decoder usage in %

sm - CUDA usage in %.

page 181 from 235



SNMP

Flussonic Media Server has simple implementation of SNMP protocol.

You need to configure it in config:

snmpE4000;

edit_authEadminEpassword;

This will enable listener on port 4000

Now let's try to fetch stats via snmp:

apt-getE-yEinstallEsnmpEsnmp-mibs-downloader

cdE/opt/flussonic
snmpwalkE-cEadminE-vE2cE-ME+apps/snmp2/mibs/E-mEFLUSSONIC-MIBE127.0.0.1:4000E.

Here we specify key -c admin that means "community" in terms of SNMP.

SNMP community is equal to admin login.

If everything is ok, you will see something like:

#EsnmpwalkE-cEflussonicE-vE2cE-ME+apps/snmp2/mibs/E-mEFLUSSONIC-MIBE127.0.0.1:4000E.
CreatedEdirectory:E/var/lib/snmp/mib_indexes

SNMPv2-SMI::
SNMPv2-SMI::
SNMPv2-SMI::
SNMPV2-SMI::
SNMPv2-SMI:
SNMPv2-SMI::
SNMPv2-SMI::
SNMPv2-SMI::
SNMPv2-SMI::
SNMPv2-SMI::
SNMPv2-SMI:
SNMPV2-SMI::
SNMPv2-SMI::
SNMPv2-SMI::
SNMPv2-SMI::
SNMPv2-SMI:

mib-2.1.1.0E=ESTRING:E"FlussonicE4.6.15"
mib-2.1.2.0E=EOID:EFLUSSONIC-MIB::flussonicModule
mib-2.1.3.0E=ETimeticks:E(258134)E0:43:01.34
mib-2.1.4.0E=ESTRING:E"info@erlyvideo.org"

:mib-2.1.5.0E=ESTRING:E"Flussonic"

mib-2.1.6.0E=ESTRING:E"Erlang"
mib-2.1.7.0E=EINTEGER:E72
mib-2.1.8.0E=E Timeticks:E(0)E0:00:00.00
mib-2.11.1.0E=ECounter32:E143
mib-2.11.3.0E=ECounter32:E0

:mib-2.11.4.0E=ECounter32:E12

mib-2.11.5.0E=ECounter32:E0
mib-2.11.6.0E=ECounter32:E0
mib-2.11.30.0E=EINTEGER:E1
mib-2.11.31.0E=ECounter32:E0

:mib-2.11.32.0E=ECounter32:E0

FLUSSONIC-MIB::streamsNum.0E=EGauge32:E12
FLUSSONIC-MIB::sName.1E=ESTRING:Estream1
FLUSSONIC-MIB::sName.2E=ESTRING:Estream2

FLUSSONIC-MIB::sClientCount.1E=EGauge32:E3
FLUSSONIC-MIB::sClientCount.2E=EGauge32:E0

FLUSSONIC-MIB::sRetryCount.1E=EGauge32:E0
FLUSSONIC-MIB::sRetryCount.2E=EGauge32:E168

page 182 from 235



FLUSSONIC-MIB:
FLUSSONIC-MIB::

FLUSSONIC-MIB::
FLUSSONIC-MIB::

FLUSSONIC-MIB::
FLUSSONIC-MIB::

FLUSSONIC-MIB::
FLUSSONIC-MIB::

FLUSSONIC-MIB::

FLUSSONIC-MIB

:sLifeTime.1E=ECounter64:E10638344

sLifeTime.2E=ECounter64:E0

sBitrate.1E=ECounter64:E1750
sBitrate.2E=ECounter64:EQ

sBytesIn.1E=ECounter64:E£2357155155
sBytesIn.2E=ECounter64:E0

sBytesOut.1E=ECounter64:E2663036544
sBytesOut.2E=ECounter64:E0

sStatus.1E=EINTEGER:Eactive(1)

::sStatus.2E=EINTEGER:Eactive(1)

SNMPv2-SMI::snmpModules.1.1.6.1.0E=EINTEGER:E1970179785
SNMPV2-SMI::snmpModules.10.2.1.1.0E=ESTRING:E"flussonicID"
SNMPv2-SMI::snmpModules.10.2.1.2.0E=EINTEGER:E1
SNMPv2-SMI::snmpModules.10.2.1.3.0E=EINTEGER:E2582
SNMPv2-SMI::snmpModules.10.2.1.4.0E=EINTEGER:E484
SNMPv2-SMI::snmpModules.11.2.1.1.0E=ECounter32:E0
SNMPv2-SMI::snmpModules.11.2.1.2.0E=ECounter32:E0
SNMPv2-SMI::snmpModules.11.2.1.3.0E=ECounter32:E0
SNMPv2-SMI::snmpModules.11.2.1.3.0E=ENoEmoreEvariablesEleft
inEthisEMIBEViewE (ItEisEpastEtheEendEofEtheEMIBEtree)

FLUSSONIC-MIB::sStatus answers with an integer with the following values:

active =1

notinService =

notReady = 3

2

page 183 from 235



DRM content protection in Flussonic Media
Server

DRM (Digital Rights (Restrictions) Management) is a content protection method where the content is
encrypted and decrypted by using a pair of keys. The keys are generated by a

key server

of a DRM system.

Flussonic Media Server supports the following DRM systems: KeyOS and Conax, and it also supports
AES128 encryption.

Many DRM servers rotate license keys in order to achieve better security. Flussonic rotates keys by
itself N it requests a new key from a DRM key server every 10 minutes.

The mechanism of DRM

In the HLS specification Apple describes two standard encryption alorithms: AES-128 and SAMPLE-AES.
Flussonic Media Server supports both of them as well as Conax DRM.

The algorithms use different encryption methods, but they all work in the same way:
Flussonic requests and retrieves an encryption key from a key server together with the URL of this
key.
The client retrieves from Flussonic encrypted content and the URL of a decryption key.

The key server recieves a request from this client and then decides if it should respond with a
decryption key or not.

If the client receives video content from Flussonic over a safe channel and connects to the key server
over HTTPS, you can most likely expect that it can decrypt video and play it without revealing this
decrypted content to illegitimate users.

Mechanics of retrieving keys are equal for video streams and files.

Setting up encryption
Flussonic Media Server stores all content in an unencrypted form. Content gets encrypted when
Flussonic transmits it to the client.

To turn on encryption, add the drm line to the configuration of a stream or VOD location. Then specify
the DRM encryption method and the DRM key server. Later on this page you will find examples of
configurations for different DRMs.

After you have saved the configuration, Fussonic will encrypt content for all protocols that can work
with the specified DRM.

Warning! Make sure you disable all protocols that do not support the specified DRM.

If an encryption method is supported by HLS, but you left the HDS protocol enabled, any user can play
this video over HDS, bypassing encryption.

page 184 from 235



To avoid this, you should manually disable all excessive protocols for the specified stream or VOD
location:

streamEchannel0E{

EEhdsEoff;
EEmpegtsEoff;
EEdashEoff;

}

fileEvodE{
EErtspEoff;
EErtmpEoff;
EhdsEoff;
EmpegtsEoff;
EEdashEoff,

}

m> [T

Now a user can access video only over HLS.

DRM for VOD files and live streams

In this case, the external key server cannot distribute keys directly, because it does not know when a
file will be opened.

So you need to configure the file for accessing a key server directly:

fileEdrmE{

EEdashEoff;
EEdrmEaes128Ekeyserver=http://192.168.0.80:4500/;
}

With this configuration Flussonic will request the key server with HTTP GET and ?file= parameter:
http://192.168.0.80:4500/?file=drm/bunny.mp4

As a response Flusonic expects data where first 32 bytes should be HEX representation of an
encyrption key. Also it expects X-Key-Url HTTP header that will be redirected to a client. This X-Key-Url
should be a 16-bytes long decryption key (NOT in HEX form).

Conax DRM

Example of configuration, the drm line:

EEdrmEconaxEkeyserver=https://uSeR:PasswOrd@cas-gateway:12346;

For more options see Conax DRM page.

page 185 from 235



BuyDRM (KeyOS)

Example of configuration, the drm line:
EEdrmEkeyosEuserkey=596f7572-2075-7365-725f-6b6579202020;

For more options see BuyDRM (KeyOS) page.

DRM protection of DVR archives

Archives are encrypted segment-by-segment with one key, and every 10 minutes Flussonic uses a new
key for each next group of segments.

Important! For DRM protection to work on DVR, the key server must store all old keys (at old URLS) for
a time equal to the depth of the archive.

page 186 from 235



A trivial key server

Here goes an example of a primitive key server for AES-128 or SAMPLE-AES encryption:

cas-server.php:
user-key.php:

Place these files into a web server directory. "cas-server.php" must be accessible for Flussonic, "user-
key.php" must be accessible for clients.

Configure DRM for stream in the following way:

streamEortE{

EEurlEudp://239.0.0.1:1234;

EEhdsEoff;

ErtmpEoff;

ErtspEoff;

EdashEoff;

EmpegtsEoff;
EEdrmEaes128Ekeyserver=http://192.168.0.80:4500/cas-server.php;
}

m mp my me

where http://192.168.0.80:4500/cas-server.php is an url of PHP script above.

Flussonic will rotate keys once per 10 minutes.

page 187 from 235



Conax DRM

Configure DRM for stream or VOD location as follows:

streamEortE{

EEurlEudp://239.0.0.1:1234;

EEhdsEoff;

ErtmpEoff;

ErtspEoff,;

EmpegtsEoff;

EmetaEdrm_idEev0234;E#EOptional, EbyEdefaultEContentldEisEstreamEname
EdrmEconaxEkeyserver=https://uSeR:Passw0rd@cas-gateway:12346;

>~ T m m m [

fileEdrmE{
EEpathE/storage/vod,;
EEhdsEoff;
ErtmpEoff;
ErtspEoff;
EmpegtsEoff;

m mp mp

EdrmEconaxEkeyserver=https://uSeR:PasswOrd@cas-gateway:12346;

~ m

where https://uSeR:PasswOrd@cas-gateway:12346 is a keyserver url with credentials provided by
Conax.

If you want to specify Contentld, use meta drm_id <Desired ContentlD> for live streams.

For VOD file /path/to/vod/content.mp4 Flussonic reads Contentld from
/path/to/vod/content.mp4.conax_id file.

Please, mention that you need to put only host+port to keyserver address, because Flussonic will add
path /ca-server/webservices/key-server/conax itself.

Important about password

If you get from Conax password like aaa%43bbb, be careful: you need to escape these spec-symbols
when you put them to config. This example password will look like aaa%25bbb, because % must be
written as %25 in HTTP urls.

page 188 from 235



BuyDRM's KeyOS platform

BuyDRM's KeyOS platform is a multi-DRM provider that allows you to protect content with several
DRM technologies.

You can encrypt your content for the HLS or DASH delivery with BuyDRM.

Flussonic is acting as online packager. It means that you keep your original content untouched on disk
and can even serve to some users without protection if it is required, but for outer world Flussonic will
encrypt ondemand.

Flussonic supports encrypting live streams and vod files.

First you need to get User Key from BuyDRm. It is a UUID-like identifier that will be user in Flussonic
configuration like userkey

Configure DRM for stream or VOD location as follows:

streamEortE{

EEurlEudp://239.0.0.1:1234;

EEhdsEoff;

ErtmpEoff,;

ErtspEoff;

EmpegtsEoff;
EmetaEdrm_idE536f6065-2063-6f6e-7465-6e745{696420;
EEdrmEkeyosEuserkey=5967572-2075-7365-725f-6b6579202020;
}

m m mp [mp

fileEdrmE{

EEpathE/storage/vod,;

EEhdsEoff;

ErtmpEoff;

ErtspEoff;

EmpegtsEoff;
EdrmEkeyosEuserkey=596{7572-2075-7365-725f-6b6579202020;

>~ m m m M

Parameter userkey is User Key provided by KeyOS, so just copy paste it from web console

Next thing is KeyID. It is a UUID, that you need to generate randomly for each stream or file that you
want to protect.

If you use the same KeyID for multiple videos, a single license would be enough to decode the whole
group.
Put this generated KeyID as a meta drm_id <KeylD> option for live streams.

For VOD file /path/to/vod/content.mp4 Flussonic reads KeyID from
/path/to/vod/content.mp4.keyos_id file.

So you need to create /path/to/vod/content.mp4.keyos_id with text UUID inside. If your file is called
/storage/Gattaka.mp4 for example, then you will have to create file /storage/Gattaka.mp4.keyos_id.

Here is an example of command line key id creation:

$EuuidE>E/storage/Gattaka.mp4.keyos_id
page 189 from 235



Web interface

Active channels list

The Media tab displays the list of active streams. Any stream can be played via a desired protocoal, it's
archive is available for viewing (provided archiving is on) as well as its real time traffic and client
connections diagrams. The list of clients can be viewed by clicking on the client connections number.
The time elapsed since the stream stopped receiving data from its data source can also be viewed,
and the stream can be restarted.

General monitoring

The General monitoring tab displays diagrams of traffic activity, client connections, memory and disk
usage, etc.

The Configuration section allows to manage all server settings via the web interface. Read more under
the Configuration section of this documentation.

Support

When you need to contact the support, first please see the Support section and obtain the logs from
there.

page 190 from 235



Installation

Read before installing: how do | change my password?

Extremely important! Once the installation is complete, use the following administrator login and
password for managing Flussonic Media Server:Eflussonic and letmein! Do change them immediately
after the installation, so as not to compromise the security of your server.

In order to change the administrator password, you can edit the config file
[etc/flussonic/flussonic.conf and change the value of the edit_auth directive, or do the same via the
Web interface under System > Config > Global options.

When you are done manually editing the config file, do not forget to make Flussonic Media Server
read the new settings by running the following command:

Jetc/init.d/flussonicEreload

Installing on Debian / Ubuntu

Supported architectures: amd64 ( armhf. i686 is not supported.
Required OS version: Ubuntu 12.04 and newer, Debian 7 wheezy and newer.

Installing Flussonic Media Server using Debian package:
wgetE-qE-OE-Ehttp://debian.erlyvideo.org/binary/gpg.keyE|Eapt-keyEaddE-;
echoE"debEnhttp://debian.erlyvideo.orgEbinary/"E>E/etc/apt/sources.list.d/erlyvideo.list;
apt-getEupdate;

apt-getE-yEinstallEflussonicEflussonic-ffmpegEflussonic-python

Now you are ready to start Flussonic Media Server:

[etc/init.d/flussonicEstart

Open in browser Flussonic admin web interface on the page http://flussonic-ip:8080/ and paste there
license key that you have received (change "flussonic-ip" to the real address of the server). On this
page you can change administrator login and password.

License key stored in /etc/flussonic/license.txt file, you can put the key there before start.

You can check whether your Flussonic installation is correct by visiting http://flussonic-ip:8080/ where
flussonic-ipEis the address of the hosting server to which you installed the software. You can also run
the following command:

Jetc/init.d/flussonicEstatus

Now installation is complete, and Flussonic Media Server is ready to operate. However, for best
performance with a high client volume, we suggest you do some system tuning.

You also need to

completely disable a swap

page 191 from 235



, as its presence is not compatible with video streaming. If the server doen't have enough RAM, it can't
be extended b y a swap.

Installing RPM on Centos / Redhat etc.

Important! We strongly recommend that you avoid using RPM-based distributions: Centos, Redhat,
Suse etc. This is due to a number of reasons. We do not provide technical support on issues
concerning RPM packages and distributions to users who have purchased less than 10 user licenses.

Installing Flussonic Media Server from Yum repository:

catE>E/etc/yum.repos.d/Flussonic.repoE

Number of open descriptors

By default, in OS Linux the max number of open files per process is set to 1024. This means that once
the number of connections goes slightly over 1000, new connections will be refused even though
there is still enough resources. Add the following lines to /etc/security/limits.conf:

rootEEEEEEEEEEEESoftEEEENofileE65536

The number of open descriptors exceeds the number of client connections.

Important! The syntax in the limits.conf file may vary from OS to OS. This documentation gives a
working example of syntax for Debian/Ubuntu. Under other systems, syntax may be different.

Updating Flussonic Media Server

To install updates, simply update the packages and install Flussonic:

apt-getEupdate
apt-getE-yEinstallEflussonic
letc/init.d/flussonicErestart

Which version is currently installed?

dpkgE-IE|EgrepEflussonic

How to revert to the previous version?

It is sometimes necessary to install previous version. To do this, you must specify exact version of
flussonic package and its dependencies.

Suppose you want to version 4.5.20. Get dependencies versions using apt-cache:

apt-cacheEshowEflussonic=4.5.20E|EegrepE'~(Depends|Suggests):'
Depends:Eflussonic-erlangE(=18.2.1),Eflussonic-pythonE(=2.7.3)

page 192 from 235



Suggests:Eflussonic-ffmpegE(>=E4.2)

Install packages with these versions:

apt-getEinstallEflussonic=4.5.20Eflussonic-erlang=18.2.1Eflussonic-python=2.7.3Eflussonic-ffmpeg=4.2

For convenience, here are commands for installing versions 4.5.20 .. 4.5.23:

apt-getEinstallEflussonic=4.5.20Eflussonic-erlang=18.2.1Eflussonic-python=2.7.3Eflussonic-ffmpeg=4.2
apt-getEinstallEflussonic=4.5.21Eflussonic-erlang=18.2.1Eflussonic-python=2.7.3Eflussonic-ffmpeg=4.2
apt-getEinstallEflussonic=4.5.22Eflussonic-erlang=18.3Eflussonic-python=2.7.3Eflussonic-ffmpeg=4.2
apt-getEinstallEflussonic=4.5.23Eflussonic-erlang=18.3Eflussonic-python=2.7.3Eflussonic-ffmpeg=4.2

Important! Before installing packages sure to make a backup of the configuration files in the directory
letc/flussonic and .db files in the directory /opt/flussonic/priv. (This directory is used by default, path
can be changed in the config file.)

Important! We cannot guarantee the server's operation on those Linux distributions for which we do
not provide installation packages.

Starting and stoppingEFlussonic
Use the following commands:
to start the service:

[etc/init.d/flussonicEstart

to stop the service:

letc/init.d/flussonicEstop

to restart the service:

Jetc/init.d/flussonicErestart

to reconfigure with client connections live:

Jetc/init.d/flussonicEreload

System requirements

Please see the minimum system requirements to the host server for running Flussonic Media Server
in the table below. In reality, the requirements may slightly vary depending on the number of
concurrent connections to Flussonic server.

Important! When calculating host server capabilities, all resources required for normal functioning of
the operating system and other services running parallel to Flussonic must be taken into account.

Minimum system requirements

page 193 from 235



Concurrent connections 10 100 1E000 5E000+

Processor Any Single core Quad core (Xeon / Core i7) Dual core Xeon E5

RAM 128 MB 256 MB 1024 MB 16 GB Free disk space 40 MB 40
MB 40 MB 40 MB Network adapter 100 Mbit/s 1 Gbit/s 1 Ghit/s Server
NIC 10 Ghit/s Intel Operating system Debian Linux, Ubuntu Linux

For stable streaming video playback with a high volume of concurrent connections, we recommend
distributing the traffic load among several real servers. For detailed information on clustering of
Flussonic servers, please see the Clustering section.

Please note that when files on disk are used as the data source, the disk subsystem bears the main
burden. Consequently, when planning the host server architecture for running Flussonic Media
Server, special attention should be paid to the hard disk performance. For more detail on this subject,
please see file streaming.

If the host server is protected with a firewall, exception rules must be set for ports and protocols used
by Flussonic Media Server.

For the commercial version, it is also vital that Flussonic Media Server itself has access to the Internet
via HTTP and HTTPS protocols.

page 194 from 235



Updating Flussonic

Update the Flussonic Media Server package when a version with new features or with bug fixes is
released. We recommend that you update Flussonic more or less regularly. You can revert the
changes, if necessary.

Our blog keeps you updated about new versions: https://flussonic.com/blog
Updating for Debian and Ubuntu

apt-getEupdate
apt-getE-yEinstallEflussonic
Jetc/init.d/flussonicErestart

Important. You need to restart Flussonic manually after updating (the last command in the example
will do it).

The package manager can report changes to the /etc/flussonic/flussonic.conf file. In this case we
recommend that you save the already installed version by pressing the N key.

The configuration file from the package will be saved in the file /etc/flussonic/flussonic.conf.dpkg-dist.
After examining the changes, you can delete it.

Update for CentOS

Updating Flussonic on CentOS is done in the same way as installing:

bash
yumE-yEinstallEflussonicEflussonic-erlangEflussonic-pythonEflussonic-ffmpeg

The package manager can create the file /etc/init.f/flussonic.rpmnew. Rename it:

bash
mvE/etc/init.f/flussonic.rpmnewE/etc/init.f/flussonic

Then restart Flussonic:

bash
Jetc/init.d/flussonicErestart

page 195 from 235



Configuring Flussonic Media Server

Content:

Flussonic Media Server configuration management
Restarting Flussonic Media Server

The server's global options

Stream or group settings

VOD settings

Flussonic Media Server configuration management

Flussonic Media Server settings are stored in the configuration file /etc/flussonic/flussonic.conf.

If any changes have been made to configuration parameters within flussonic.conf, the Flussonic Media
Server service must be reloaded with the following command:

/etc/init.d/flussonic reload
Another way to reload the service is to use the HTTP API:
curl -u user:pass http://localhost:8080/flussonic/api/reload

where user:passtN login & password specified in edit_auth (see Other server options later on this
page) .

RestartingEFlussonic Media Server

To restart the server with Flussonic, run this command:

/etc/init.d/flussonic restart

The server's global options

Server Options (Ports and Protocols)  Description https 443;  Turns on accepting HTTPS
requests via the specified port. Multiple ports can be specified with multiple lines. http 80;

Turns on accepting HTTP requests via the specified port. Multiple ports can be specified with multiple
lines. http 127.0.0.1:80; Turns on accepting HTTP requests via the specified port and IP
address. Multiple ports can be specified with multiple lines. rtmp 80; Turns on accepting

RTMP requests via the specified port. rtmps 1443  Turns on accepting RTMPS requests via the
specified port. rtsp 554; Turns on accepting RTSP requests via the specified port. rtsps
1554; Turns on accepting RTSPS requests via the specified port. mysql 3306; Turns on
accepting MySQL queries via the specified port.

When configuring protocol HTTPS, RTMPS, RTSPS Flussonic Media Server expects the availability of
certificates in the directory /etc/flussonic.

For what would RTMPS protocol to work, you must have a valid certificate, which works without any
warnings or errors.

Flussonic Media Server expects the private key of the server in the file /etc/flussonic/flussonic.key with
password flussonic.

page 196 from 235



The server certificate will be read from the file /etc/flussonic/flussonic.crt.
Intermediate and CA certificates will be taken from /etc/flussonic/flussonic-ca.crt.

For example, upon receipt of the purchased set of keys and certificates, it is necessary to do the
following:

catEintermediate.crtEca.crtE>E/etc/flussonic/flussonic-ca.crt
cpEserver.crtEflussonic.crt
opensslErsaE-des3E-inEserver.keyE-outEflussonic.key

Other Server Options  Description loglevel info;  Manages the level of detall in the data
being logged. Variable values: debug, info, alert. logrequests true;  Turns on logging all HTTP
requests to /var/log/flussonic/access.log. auth_token TOKEN; Specifies the name of the query
string parameter to be interpreted as the authorization token. auth false;  Turns off
authorization at the global scope. auth http://backend/auth.php;  Turns on the authorization
backend at the global scope. max_sessions 1000;  Sets global limit on the quantity of
concurrent sessions. no_auto_token; auto_token false; If this option is specified, any
incoming request without the token variable in the query string will be refused immediately.

auto_token UUID; If this option is specified, the authorization token will be generated automatically,
provided that it is not found within the query string. auto_token blank; If this option is
specified, a blank authorization token will be accepted, provided that no token is found within the

guery string. This is the default behavior. cluster_key SECRETKEY; This line of code is used
for authorizing other Flussonic servers comprising a cluster. view_auth USER PASSWORD;
Turns on authorization for read-only access to API. edit_auth USER PASSWORD; Login and
password for administrator access to the server. api_allowed_from 10/8 192.168/16; Specifies
IP addresses or networks from which accessing API is allowed. notify HANDLER_NAME {EEsink
http://backend/event.php;} notify HANDLER_NAME {EEsink /etc/flussonic/events.lua;}  Flussonic
events will be sent to the specified URL or script. Learn more in Events API pulsedb
Ivar/lib/flussonic;  Specifies the path to which streams statistical data will be recorded.

session_log /var/lib/flussonic;  Specifies the path to which session history will be recorded.
session_log false;  Disables writing sessions to disk. url_prefix PREFIX url_prefix
http://my.domain.address.com:8080; When using the HLS protocol, for all streams on the server the
addresses of individual segments and playlists within the playlist variable will start with the speicified
prefix. This setting is available in the global part of the config file as well as locally for any individual
stream. Naturally, when specified at the stream level, it is only valid for this particular stream.

source SOURCE/PREFIX; source SOURCE/PREFIX { }source originl.tv {}  This directive turns on
automated stream repeating to the local server from a remote one. stream ntv { EEurl
tshttp://source/ntv.ts;}  The stream directive turns on a permanent stream that will be kept alive for
the entire lifetime of the server, even if no data sources are available. Please see below for the stream
directive's options. ondemand ntv { EEurl tshttp://source/ntv.ts;}  The ondemand directive
specifies the stream to be started on demand. If the stream has been unavailable for a certain

amount of time, it will be turned off automatically. Please see below for the ondemand directive's
options. rewrite client16/* { EEurl rtmp://origin/%s;}  The rewrite directive turns on dynamic
stream start on demand, for all streams with the names satisfying the client16/* mask. Please see
below for the rewrite directive's options. live published {} The live directive makes it possible
to publish to the server all streams with the names starting with published/. Please see below for the

live directive's options. file vod { EEpath /storage;} The file directive turns on broadcasting for
all files in the /storage directory with the names starting with vod/. Please see below for the file
directive's options. cache globalcache /variwmww misses=4 2d 40G; %onfigures a global cache
named globalcache in the /var/www directory, with the limits of 40 Gigabytes and 2 days, and

Flussonic beginning to put files in the cache only after 4 requests for the files (cache misses).

page 197 from 235



Stream or group settings

These settings are for use in the directives stream, ondemand, rewrite, and live. We call them options.

auth

auth http://backend/;  Turning on authorization for a stream. See more in the authorization section.

domains

domains hostl.ru *.hostl.ru;  Specifying the domains, within which playing this video is allowed. This
does not work for those clients that do not pass the value of Referer. To work correcty in the WEB the
flussonic domain must present in the list (the domain of the embed.

allowed_countries

allowed_countries RU US CN;  The list of two-character codes of countries where the access is
allowed (for code reference see the MaxMind database).

url

url tshttp://transcoder:port/;  URL of the data source. It is possible to list several URLSs for trying the
first available data source.

Important: If a UDP source is used, the configuration file must contain this particular UDP address
only once. If multiple streams use the same UDP address, chances are it will not work.

urls

urls sourcel source2; A list of data source URLs. More info about switching sources.

url_prefix

url_prefix prefix for instance url_prefix http://my.domain.address.com:8080 When using HLS
protocol, the addresses of individual segments and playlists within the variant playlist will start with
the specified prefix. This option may be used not only as part of an individual stream's settings but
also in the global portion of the config file. If the option is specified globally, it will be applied to all
streams on the server.

dvr

dvr /storage 1d 50% schedule=8:00-16:00;  Turning on archiving feature. This command tells
Flussonic Media Server to store archived data in the /storage/streamname directory and clean up that
directory either once a day or when the disk gets 50% full. Instead of days, hours can be specified:
20h. Parameter “schedule™ allows you to set a schedule on the DVR the form of intervals. The time is
specified in UTC in hours and optionally with minutes, the interval can overlap midnight: 22-1:30. A
schedule can contain multiple intervals, separated by a comma: 8:00-16:00,22-1:30.

dvr_offline

dvr_offline /storage 1d 50%; With this option specified, the stream will not turn on archiving on
start. It will have to be turned on explicitly via API. This option used in place of dvr option.

udp

udp 239.0.0.1:5001 multicast_loop; udp 239.0.0.1:5001; This causes Flussonic Media Server to send
the stream via MPEG-TS over UDP. To set MULTICAST_TTL parameter on UDP socket use following

page 198 from 235



syntax: udp 239.0.0.1:5001?ttI=8;. To set constant bitrate (CBR) use following syntax: udp
239.0.0.1:5001?cbr=2000;, where 2000 is bitrate in kbit/sec.

thumbnails

thumbnails;  Turns on generation of stream preview thumbnails. The flussonic-ffmpeg package must
be installed.

retry_limit

retry_limit 10;  This sets the number of times Flussonic Media Server will try to connect to the data
sources before closing a non-static stream.

clients_timeout

clients_timeout 10;  This sets the time period (in seconds), for which Flussonic Media Server will keep
serving a non-static stream after the client's last request.

source_timeout

source_timeout 10;  Specifies the period of time, in seconds, for which Flussonic Media Server waits
for new frames to come from the data source. When this time passes, Flussonic attempts to reconnect
to the data source. Default source_timeout is 60 seconds.

frames_timeout

frames_timeout 3;  Specifies the period of time, in seconds, for which Flussonic Media Server waits
for new frames to come from the data source before it generates the event frames_timed_out. This
period of time must be smaller than in source_timeout. The event frames_timed_out informs you that
the source might soon be lost. If frames come again from this source, before source_timeout has
passed, Flussonic issues the frames_restored event.

password

password secret; The password that will be passed via query string (http or rtmp) for publication in
a stream or group.

push

push rtmp://destination-server/name;  This option tells Flussonic to publish the stream to another
server.

backup

backup vod/blank.mp4;  Setting this option for the stream will launch the specified file
vod/blank.mp4 while the video from the data source is unavailable.

publish_enabled

publish_enabled;  Specifying this option for the stream allows to publish video into it. Meaningless
for a group of streams.

on_publish
on_publish http://host/publish.php; on_publish /etc/flussonic/publish.lua;  Causes publishing to this
stream or stream group to call a script or send HTTP request with such parameters as the stream

name, publisher's IP, etc. In response it is possible to refuse publication or allow: the HTTP backend
must return 200 OK or 403 Forbidden; the .lua script must return {true, {}} or {false, {}.

page 199 from 235



max_sessions

max_sessions 1000; Sets the limit on the quantity of sessions for the stream.

settings_rtp

rtp udp; Turns on obligatory use of UDP for working with RTSP cameras.

add_audio_only

add_audio_only; Adds to the HLS playlist a link to an audio-only stream. This is needed to validate
the app in Apple devices.

no_prepush

no_prepush; Turns off the quick-start prepush feature. Might be useful for keeping real-time
streaming.

prepush

prepush 10; Enables a buffer of specified duration, in seconds. If the client's connection to the
server is interrupted or slowed down, it plays video from the buffer, which allows the player to start
faster, but with a lag.

max_bitrate

max_bitrate 1000; Sets the bitrate limit for the stream being published.

logo

Version 4.6.15 and above.

logo path=flu/lembed-logo.png height=100 width=100 left=0 top=0;  Add logo at playback. This logo
will not be displayed on mobile devices and in the DVR player. To add logo to video use transcoder.
path (required) N path relative to wwwroot directory. height, width N logo image size in px. If ony
only one of these parameters is present then the other is scaled proportionally. Omit these
parameters to display logo in the original size. left, top, right, bottom N logo image location specified
by offset in px. For example, right bottom corner: right=0, bottom=0. Don't use left and right, top and
bottom parameters together.

mpegts_pids

mpegts_pids pmt=4095 sdt=0x12 v1=211 v2=212 a0=220 t0=16#fb;  This parameter sets PIDs values
for outgoing MPEG-TS stream. It is possible to set PID for PMT, STD and tracks. Tracks numbered
starting from one: al=123 sets PID for the first audio track. It os possible set base index for the tracks
of certain type using the 0 (zero) index. Example: "'t0=100" sets PID=101 for the first track, 102 for the
second, and so on. Numbers can be given in decimal form (by default) or in hexadecimal with 0x

prefix.

segments

segments 5;  Specifies the number of segments in the HLS and HDS playlists.
segment_duration
segment_duration 4;  Specifies the duration of a segment for HLS and HDS streams in seconds. For

some incoming streams Flussonic will not apply the specified segment duration. All depends on a
stream's GOPs in seconds. A segment duration must be divisible by GOP because GOP cannot be cut

page 200 from 235



into smaller parts. For example, for a stream with 4-second GOPs, possible segment duration is
4Eseconds, 8Eseconds, 12Eseconds, and so on. Otherwise, Flussonic will create segments equal to each
GOP in a stream.

segment_count

segment_count 4;  Number of segments for buffering.
group

group sport;  Used only on a source server to define the names of TV channel groups where a
stream is included. [Learn more](/doc/iptv/stream-groups)

disabled

disabled; Stop stream.

VOD settings

These settings are for use in the file directive. We call them options.
file

file vod {EEpath /storage;} Complete version of the location for file playback.
cache
cache /ssd misses=5 2d 40G; All requests for files will be cached in the /ssd folder for no longer than

2 days, with the size limit of 40GB. The caching feature will turn on when one file gets more than 5
uncached requests.

domain

domain host.com;  Specifies the domains where the video can be played. This does not work for
those clients that do not pass the value of Referer.

domains

domains hostl.com *.host2.com; Specifies the domains where the video can be played. This does
not work for those clients that do not pass the value of Referer.

path

path /storage; path s3://key:secret@s3.amazonaws.com/bucket/;  Specifies file search path. You can
specify multiple search paths.

read_queue

read_queue 100; The number of simultaneous requests to disk for a given prefix.

download

download; Enables downloading the file and Range requests for it.

max_readers

max_readers 10;  Specifies the max number of simultaneous disk requests to the entire prefix.

thumbnails

page 201 from 235



thumbnails offset=10;  Turns on poster generation with optional offset time in seconds. The
flussonic-ffmpeg package must be installed.

page 202 from 235



Monitoring

The task of Flussonic process supervision can be accomplished by using Monit. Monit is a background
service, which runs on GNU/Linux systems (e. g., Ubuntu) and can find processes by PID, check the
activity of ports, resources (CPU, RAM) used by the process, and so on.

Installing utilities

You will need to install Monit and Postfix. Postfix is an e-mail utility.

Under Ubuntu, the following commands are used for installation:

sudoEapt-getEinstallEmonit
sudoEapt-getEinstallEpostfix

Configuring Monit

Monit configuration file can be found at /etc/monit/monitrc Flussonic PID file is located at
Ivar/run/flussonic/pid

Here is an example configuration for monitoring Flussonic:

setEmailserverElocalhost
setEmail-formatE{Efrom:Emonit@example.comE}
setEmail-formatE{Efrom:Esupport@example.comE}
setEalertEsys@example.com
setEhttpdEportE2812EandEallowElocalhost

EcheckEprocessEflussonicEwithEpidfileE/var/run/flussonic/pid
EEEstartEprogramE=E"/etc/init.d/flussonicEstart"

T

EEstopEprogramE=E"/etc/init.d/flussonicEstop"
EEEifEfailedEhostEexample.comEportE1935EtypeEtcp
EEwithEtimeoutE5Eseconds

EEthenErestart

m> [T

EEcheckEsystemEexample.com

Note that example.com and email addresses are given for example purposes and must be replaced
with real ones.

More information on configuring Monit is available at its official website. Plenty of advice on using
Monit can be found around the Web.

page 203 from 235



Fine-tuning Flussonic Media Server and OS

This section discusses certain common issues and techniques of tweaking the operating system and
Flussonic Media Server for greater workloads.

UDP capture setup

For capturing data via UDP under Linux, the amount of memory allocated to UDP buffers should be
increased:

sysctlE-wEnet.core.rmem_max=1048576
sysctlE-wEnet.core.rmem_default=1048576
sysctlE-wEnet.ipv4.udp_mem="8388608E12582912E16777216"

Note that these settings will persist only until reload. In order to save them permanently, edit the file
letc/sysctl.conf by adding at the end of it the following:

net.core.rmem_maxE=E1048576
net.core.rmem_default=1048576
net.ipv4.udp_memE=£8388608E12582912E16777216

and then running the
sudo sysctl -p

command to apply the changes.

Working with a large amount of memory

When more than 60GB of memory is available, we recommend allocating 10GB to the system:
sysctlEvm.min_free_kbytes=10240000

TCP/IP stack setup

If you intend to use Flussonic Media Server for broadcasting at more than 3-4 Gbit/s, you might want
to fine-tune the system's TCP/IP stack.
First, you will need to allocate more memory to connection buffers:

sysctlE-wEnet.core.wmem_max=16777216
sysctlE-wEnet.ipv4.tcp_wmem="4096E4194394E16777216"
sysctlE-wEnet.ipv4.tcp_congestion_control=htcp
sysctlE-wEnet.ipv4.tcp_slow_start_after_idle=0

Note that these settings will persist only until reload. In order to save them permanently, edit the file
letc/sysctl.conf by adding at the end of it the following:

net.core.wmem_maxE=E16777216
net.ipv4.tcp_wmemE=E4096E4194394E16777216

page 204 from 235



and then running the sudo sysctl -p command to apply the changes.
You will also need to change the network adapter's settings: ifconfig ethO txqueuelen 10000.

Make sure to check the adapter's driver version. Using the latest version is recommended. You can
find out the version of the driver and the firmware by typing the following:

#EethtoolE-iEeth2

driver:Eixgbe

version:E3.15.1
firmware-version:E0x61¢10001
bus-info:E0000:04:00.0

Important! If the firmware file in the /lib/firmware directory is updated, the server must be reloaded.
The old firmware version may remain. Do not forget to run the update-initramfs utility before
restarting the server.

Configuring network adapter
Configuring interrupts

Contemporary 10 gigabit network adapters support multiple queues for incoming and outgoing
packets. Sometimes these queues must be manually associated with different CPU cores.

If this optimization trick has not been performed, the server processes the entire networking
subsystem using only one core. This is how it looks like:

#EcatE/proc/interrupts

EEO:EEEEEEE2097EEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEIR-IO-APICEEEEEEtimer

E66: E2072120005EEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEHR PCI-MSIEEEEEEeth2-TXRx-0

E67: E E1562779EEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEIR-PCI-MSIEEEEEEeth2-TxRx-1

E68:EEEE1830725EEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEIR-PCI-MSIEEEEEEeth2-TXRX-2

E69:EEEE1504396EEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEIR-PCI-MSIEEEEEEth2-TXRx-3

E70:E E5112538EEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEIR PCI-MSIEEEEEEeth2-TxRx-4
E71:EEEE2229416EEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEQOEEEEEEQOEEIR-PCI-MSIEEEEEE

m»
\‘
w N P
|T])
m»
m»
m»
[EEN
[e)]
(o]
(o))
()]
[§)]
(5N
m
M
m
[T
[T
m
o
M
m
T
T
m
[T
o
m
T
T
m
M
m
o
M
M
m
T
m
[T
o
M
m
[T
m
M
m
o
m
[T
m
M
M
m
o
[T
m
M
m
m
[T
o
m
m
Py
'U
Q
z
)
T
m
T
M
m
[T
o
>0
I\)
_|
X
X
x
O

E74.EEEEEEE2358EEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEEEEEOEEIR-PCI-MSIEEEEEE th2

For Intel adapters, the manufacturer provides the set_irg_affinity script, which distributes the queues
to different cores. After running the script, the interrupts data looks like this:

#EcatE/proc/interrupts

67:EEEE1562779E1162738082EEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEEOE

68:EEEE1830725EEEEEEEEEEOE1133908105EEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEEOE

m mp

page 205 from 235



E74.EEEEEEE2358EEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEEOEEEEEEEEEE

This setting becomes critical when the traffic reaches the the vicinity of 3-5 Gbit/s.

Configuring connection to switch

If you connect server network adapter to a switch, please check that both sides have compatible
settings. You should either use "auto select" settings on both sides, or strictly the same speed and
duplex.

Optimization of the server for Video On Demand is discussed in detail in a dedicated section.

page 206 from 235



Using the license key

This section describes how to use the obtained license key.

Working with the license key

The license key should be placed into the /etc/flussonic/license.txt file
The key looks like: 5d6b1420-4093-012e-832e-0949543365b9

Remember that the server should have access to the Internet via HTTP and HTTPS.

Migrate to another server

Flussonic is making online license validation so it is very easy to move your license to another server.
Just shutdown Flussonic on first server and launch on new one.

Older versions of Flussonic (prior to 4.5.20) required waiting about 4 minutes between launches, new
versions don't require it anymore.

page 207 from 235



Lua Scripts

Erlivideo has a built-in
experimental

possibility to write scripts in the lua scripting language. luerl is used as the interpreter, so error
messages may be different from the standard ones.

Important. All functionalities described in this section are experimental and may be changed without
notice.

In addition to the standard lua library, erlivideo adds some features to scripts:

HTTP client

http.get(url) http.get(url, headers) http.get(url, headers, body) http.get(url, headers, timeout)
http.get(url, headers, body, timeout) An HTTP GET request is sent. A table with keys: code, headers,
body is sent as the reply.

http.post(url) An HTTP POSt request is sent. The arguments and answer are like those in http.get.
http.qs_encode(table) The table is encoded into a query string.

JSON module

json.encode(table) The table is translated into JSON

json.decode(text) JSON is translated into the table

Flussonic API

flussonic.config() partial erlivideo config is returned
flussonic.streams() current list of streams
flussonic.files() current list of open files
flussonic.caches() current list of disk caches

flussonic.clients() flussonic.clients(stream) current list either of all sessions or of specific sessions of
the stream

flussonic.log(text) output into the log by means of erlivideo
flussonic.debug(text) debugging output into the log by means of erlivideo
flussonic.now() current time UTC

flussonic.uuid() uuid is generated

table.to_string(table) returns the table as text

Comet server

comet.create_channel("channel”) comet.create_channel("channel”, 100) a channel in the inner comet
server is created. Channel is optionally specified

page 208 from 235



comet.send("channel”, "message") a message is sent via the comet server internal channel

SWIFT client

auth_info = swift.auth("http://proxy-server/", "account",

access is returned

password") authorization data for further

swift.list_containers(auth_info) the list of containers of the authorized account

swift.create_container(auth_info, 'videos') swift.create_container(auth_info, 'videos', {}) a container,
possibly with a meta-date, is created

swift.delete_container(auth_info, 'videos') deleting the container
swift.list_objects(auth_info, 'videos') list of objects in the container
swift.create_object(auth_info, 'videos', 'file.txt', 'contents') creating an object

swift.upload_file(auth_info, 'videos', 'remote_path.mp4', 'local_path.mp4") swift.upload_file(auth_info,
'videos', 'remote_path.mp4', 'local_path.mp4', 'local_callback _name') downloading a file. The name of
the local function can also be specified as a line that will be invoked upon booting for indicating load
on the server

FTP client

ftp.list("ftp://user:password@host/path™) The list of files in the directory

ftp.upload("local.mp4", "ftp://user:password@host/path/remote.mp4") function progress(p) end
ftp.upload("local.mp4", "ftp://user:password@host/path/remote.mp4", "progress") the local file is
uploaded to ftp. Optionally, a callback is invoked for the download status

Crypto API

crypto.md5("Hi") md5 in hex format
crypto.shal("Hi") shal in hex format
crypto.sha256("Hi") sha256 in hex format

Login using Lua

The login backend in Lua should be a normal script, the result of which should be returned in the end
by the return operator. This script receives an additional global table req with the following fields,
some of which are optional:

token - a token from the query string or automatically generated

ip - IP address of the user

name - stream/file name

referer - the optional referrer of the player (the address of the page it was inserted into)

The answer should be return true, {user_id = 15, unique = true}, return "redirect",
"http://[someotherserver/path" or return false, {code = 403}

Event handlers

An example of using Lua for filtering and sending internal Flussonic events is given in section Events
API.

page 209 from 235



Web scripts

Lua may be used to generate web pages with the use of the Flussonic infrastructure.
To do so, specify in the config: web_script mytest priv/imyscripts;

After that, when referring to the address http://192.168.2.3:8080/mytest/counter, a lua script
priv/imyscripts/web.lua will be called, and the http_handler.counter(req) function will be called in it:

http_handlerE=E{}

http_handler.counterE=Efunction(req)
EEifEnotEreq.cookies.flusessionEthen

T
m»
>
T

session_idE=Eflussonic.uuid()

EEEEheadersE=E{}
EEEEheaders['Set-Cookie"|E=E"flusession="..session_id
EEEEheaders["Location"]E=E"/mytest/counter"
returnE"http",E302,Eheaders,E"auth\n"

T
m
T
m

[
m
(I
[
<
9_’
c
D
T
11
m»
=
c
n
0
o
=
o
0
D
n
@,
o
>
«Q
)
=~
wn
D
n
0,
o
=]
I_.
o
|'|]>
x‘
D
<
L
~

EEEEend
EEEEvalueE=Eflussonic.session.get(session_id,E"key1")
EEEEflussonic.session.set(session_id,E"keyl",EvalueE+E1)
returnE"http",E200,E{},Etostring(value).."\n"

m»
mp
m»
m»

Now this script should be invoked:
$EcurlE-vEhttp://localhost:8080/mytest/counter

InEthisEscript,EallEtheEfunctionsEdescribedEaboveEwillEbeEavailable.EAlso,EtheEtableEreqEisEavailable:

req.query is the parsed query string
req.headers are HTTP headers
reqg.method is the HTTP method in uppercase letters

req.body is- the body of the HTTP header. If the body is in the www-form-encoded format, it should
be parsed in lua on its own with the use of http.qs_decode:

ifEreq.methodE==E"POST"Ethen
EEpostE=Ehttp.qs_decode(req.body)
end

The lua script can return the following responses:

return 'http’, 200, {["Content-Type"] = "text/plain"}, "Hello, world!\n" - the http response can be sent
directly

return "json", {key = "value"} - the table will be packed into JSON

page 210 from 235



return "template", {varl = "valuel", var2 = "value2"} - in this case, erlivideo will take the file called
priv/icameras/list.html that should be a valid DTL template,
where the values from the script

return "template” will be substituted, {headers = {}}, {varl = "valuel"} the same but with the
possibility to set headers

Examples

Sometimes, the task is disabling authorization for secondary servers, i.e., for multiple IP addresses. In
order to avoid adding this logic to the back-end, one can write his own authorization script:

ifEreq.ipE==E"94.95.96.97"Ethen
EEreturnEtrue,E{}
end

replyE=Ehttp.get("http://backend/script.php")

ifEnotEreply.codeE==E200Ethen
EEreturnEfalse, E{codeE=Ereply.code}
end

optsE=E{}

ifEreply.headers["x-userid"]Ethen
EEopts.user_idE=Ereply.headers["x-userid"]
end

ifEreply.neaders["x-unique"]Ethen
EEopts.uniqueE=Etrue

end

returnEtrue,Eopts

page 211 from 235



Securing Flussonic

Here you can read how to limit access to
Flussonic

administration panel.

Very important! if hacker will get access to your flussonic installation, he will be able to modify and
read any file on disk.

Login and password

Flussonic allows to edit two types of access in config: view_auth ( edit_auth.

view_auth user password; is controlling access to readonly API Flussonic functions: find out config,
status, stats.

edit_auth user password; is used for full access to Flussonic.

IP limitations

You can enable white list IP control in config: api_allowed_from 10.0.0.0/8 192.168.4.15;

Separate IP port for HTTP API

You can assign separate IP port for HTTP API:

admin_httpE8090;
admin_httpE127.0.0.1:8091;
admin_httpsE8092;

Now admin web Ul and HTTP API are available only through these ports. In cluster configuration in
peer and source directives for the node with admin_http(s) enabled, you must specify these ports.

HTTPS certificates

If you add https port to config, Flussonic will automatically redirect you from http to https.

After installation flussonic is shipped with invalid SSL certificate, but you can install your own
certificate.

You can generate your own certificate. Use password flussonic for key and put files to
letc/flussonic/flussonic.crt and /etc/flussonic/flussonic.key Here you can read instructions for
generating your own certificate.

opensslEgenrsaE-des3E-outEflussonic.keyE1024
opensslEregE-newE-keyEflussonic.keyE-outEflussonic.csrE-
subjE'/C=US/ST=TN/L=/CN=flussonic.local/O=Flussonic,ELLC/Email=support@flussonic.com'
mvEflussonic.keyEflussonic.key.org

page 212 from 235



opensslErsaE-inEflussonic.key.orgE-outEflussonic.key
opensslEx509E-reqE-daysE365E-inEflussonic.csrE-signkeyEflussonic.keyE-outEflussonic.crt

Intermediate and CA certificates will be taken from /etc/flussonic/flussonic-ca.crt.

Letsencrypt certificates

Letsencrypt company is offering free SSL certificates with 1 month expiration since april 2016.
Certificate issuing is made in automatic mode and we have added support for it into Flussonic.

How to setup Let's Encrypt

Protecting config file from overwriting

It is possible to prevent config file from modifying via API. Just create file
/etc/flussonic/flussonic.conf.locked:

touchE/etc/flussonic/flussonic.conf.locked

Now one cannot change settings via web UI.

Running as non-privileged user

You can run Flussonic as a unprivileged user. Make following preparations:

adduserEflussonicE--homeE/var/lib/flussonicE--disabled-password
chownE-REflussonicE/etc/flussonic/

chownE-REflussonicE/var/lib/flussonic/

echoEflussonicE>E/etc/flussonic/run_as

chownErootE/etc/flussonic/run_as

chmodE0644E/etc/flussonic/run_as
chownE-REflussonicE/var/run/flussonicE/var/log/flussonicE/opt/flussonic/.erlang.cookie
setcapEcap_net_bind_service=+epE/opt/flussonic/lib/erlang/erts-*/bin/beam.smp

To make Flussonic run as root again, delete file /etc/flussonic/run_as.

page 213 from 235



Let's Encrypt and Flussonic Media Server

Let's Encrypt service allows getting certificates for setting up HTTPS in automatic mode.

Flussonic Media Server has an in-built support of Let's Encrypt, therefore, installation of extra packs
and manual adjustment of a web server are not necessary.

You only have to enter the admin panel and specify the port for HTTPS, then press the button "Let's
Encrypt".

After that, Flussonic Media Server will do everything by itself B it will get the certificate and will update
it.

You do not have to worry about certificate expiry or edit text config files.

HTTPS is necessary for:

prevention of server control theft, letting someone know your password or streaming links;
protecting video from security cameras;
paste a link on a site running on https (otherwise, browsers will complain of unprotected content).

Below is more detailed description of the process of setting and the operating principle of Let's
Encrypt.

Let's Encrypt: how it works

Detailed description on the official site: https://letsencrypt.org/how-it-works/.

To make Let's Encrypt issue a valid certificate for you, it is necessary to prove that you own the
domain. When you press Issue by Letsencrypt in the admin panel, Flussonic Media Server provides the
domain name for which a certificate is required. In response, it obtains a key that should be given

back when the checking bot will address the server through HTTP (exactly on port 80) at address
http://your-domain.com/.well-known.

The checking bot addresses your domain, so the domain must be delegated, and DNS records set up
for IP address where Flussonic Media Server is operating. The bot certifies the owner of the domain,
and Flussonic Media Server saves the certificate.

To prolong the certificate, you should repeat the verification, i.e. Flussonic Media Server should always
be listening on the port http 80;. Verification cannot be transferred to other port N these are the rules
of Let's Encrypt. Prolongation occurs automatically when the certificate expires; also, the certificate
can be updated manually through the admin panel of Flussonic Media Server.

Setting

Enter the admin panel of Flussonic Media Server using a domain name instead of IP address (e.g.,
http://your-domain.com/admin)

Enter the CConfigE tab and and enter SSL-tunneled protocols as HTTPS ports, specify 443.

After that, the button "Issue by LetsEncrypt", which launches the process of getting a certificate, will
appear on the panel.

Press the button and wait for the certificate expiry date to appear (it usually takes up to 10 seconds).

page 214 from 235



This is how the menu looks when the certificate was not issued:

After the certificate was issued:

Save the settings by pressing "Save". Flussonic Media Server will redirect your browser to https:// N
now you can provide service over HTTPS.

page 215 from 235



Flussonic Media Server Migration

Important! When migrating Flussonic Media Server settings from the server to the server, executable
files and installed libraries can not be migrated. Use the batch manager to install on the new server.
Only the configuration and the license are transferred.

List of files to migrate:

letc/flussonic/flussonic.conf N the main configuration file.

letc/flussonic/license.txt N license.

lopt/flussonic/priv/iptv.db N IPTV plugin database file.
Copying of configuration files is possible only with root-rights.

Ways to transfer files:

Transferring the configuration using SCP

Transferring a Configuration Using USB Media

Transferring the configuration using SCP

SCP (Secure CoPy) is a program for remote copying of files over a network between hosts. It uses SSH
for data transfer, including authentication and security measures that are implemented for SSH.

To copy a file from one remote server "remote.host1" to another remote server "remote.host2",
execute the command of the form:

$EscpEuser@remote.host1:/directory/file.txtEuser@remote.host2:/some/directory/

Install Flussonic Media Server to the new server:

curlE-sSfEnhttps://flussonic.com/raw/install.shE|Esh

After that, transfer the configuration files to the new server:

scpEuser@remote.hostl:/etc/flussonic/flussonic.confEuser@remote.host2:/etc/flussonic/
scpEuser@remote.host1:/etc/flussonic/license.txtEuser@remote.host2:/etc/flussonic/
scpEuser@remote.host1:/opt/flussonic/priv/iptv.dbEuser@remote.host2:/opt/flussonic/priv/

Start Flussonic Media Server:

Jetc/init.d/flussonicEstart

Done!

ransferring a Configuration Using USB Media

If you want to transfer configuration files using any USB media, use the following instruction.

Mounting USB

First, create the directory to be mounted:
mkdirE-pE/mnt/usb

Insert the USB flash drive into the USB port and find out the name of the device:

page 216 from 235



fdiskE-I

The result of this command is:

DiskE/dev/sdb:E4008EMB,E4008706048Ebytes
118Eheads,E53Esectors/track,E1251Ecylinders,EtotalE7829504Esectors
UnitsE=EsectorsEofE 1E*E512E=E512Ebytes
SectorEsizeE(logical/physical):E512EbytesE/E512Ebytes
I/OEsizeE(minimum/optimal):E512EbytesE/E512Ebytes
DiskEidentifier:EOx74a37a4d

Here is the device name:/dev/sdbl.

We use it to mount:
mountE/dev/sdb1E/mnt/usb

Copying the configuration

cpE/etc/flussonic/flussonic.confE/mnt/usb/flussonic.conf
cpEletc/flussonic/license.txtE/mnt/usb/license.txt
cpE/opt/flussonic/priviiptv.doE/mnt/usb/iptv.db

After copying, do not forget to unmount the drive:

sudoEumountE/dev/sdbl
Installing the configuration on a new server

Install Flussonic Media Server to the new server:

curlE-sSfEhttps:/flussonic.com/raw/install.shE|Esh

Create a directory in which to mount the USB-drive:
mkdirE-pE/mnt/usb

Insert the media into the USB port and find out the name of the device:
fdiskE-I

Mount:
mountE/dev/sdb1E/mnt/usb

Transfer the configuration files:

cpE/mnt/usb/flussonic.confE/etc/flussonic/flussonic.conf
cpE/mnt/usb/license.txtE/etc/flussonic/license. txt
cpE/mnt/usb/iptv.dbE/opt/flussonic/priviiptv.db

)&*+#1(!, Flussonic Media Server:

StartEFlussonicEMediaEServer:

Done!

page 217 from 235



Capturing satellite video

Flussonic does not capture satellite video, however, this issue still requires consideration.

Longitude

Television satellites hang in geostationary orbit above the equator. Their position above the Earth is
constant, therefore, the satellites are identified by the longitude they hang at. For example, satellite
ABS 2 rotates around the Earth, constantly being above 75j EL.

Geostationary position makes installation of satellite dishes very simple : simply orient it to the
desired point and don't rotate the dish.

Since the satellite is over the particular longitude, usually different satellites are used to broadcasting
certain sets of channels. For example, satellite Appstar-7 76.5jE is filled with Indian channels, and
satellite Galaxy-17 91.0;{W is more used for broadcasting channels for the USA.

It is important to note that some satellites have several beams, i.e. the zones of the maximum
reception. The channels in the beams may be different. For example, the same satellite may broadcast
one set of channels to Russia, and another one to Thailand.

Configuring the receiver

Many transponders leave the same satellite in the same beam. A transponder is a single digital
channel, for receiving which it is necessary to configure the capture card to a specific frequency and
polarization.

I.e. from the same satellite, multiple frequencies and multiple polarizations are simultaneously
broadcast.

Polarization may be left/right, or horizontal/vertical. Household satellite dishes (or rather the heads of
these dishes, or converters) are able to receive both polarizations to the same outgoing cable, but do
it poorly. Professional converters receive all polarizations, but to different outputs.

This separation is caused by the fact that for switching the reception polarization, the capture card
supplies 13 or 18 volts. Below is a polarization and voltage correlation table:

Voltage (V)EEEE 13-14EEEE 17-18EEEE

Linear polarizationEEEE verticalEEEE horizontal Circular polarizationEEEE rightEEEE left

Some receivers specify voltage, and others state polarization. In fact, everything is reduced to
supplying voltage.

If a simple splitter is used to join two capture cards and supply 18 V to first of them, and 13 V to the
second one, the second one will not receive the signal.

Some receivers can switch off the voltage. In this case, they are to be connected with a splitter to
another receiver/capture card that still delivers the voltage.

Frequency bands from the satellite are conventionally divided into top and bottom bands. The border
is approximately at 11,700 MHz.

When capturing frequencies below 11,700 Mhz, the heterodyne frequency (LNB Frequency) is usually

page 218 from 235



