
Catena Manual

Catena

Flussonic

© Flussonic 2025

Table of contents

31. Products

42. Catena

72.1 Portal Management

222.2 Portal Manager Management

273. Content Management

273.1 TV Channel Management

353.2 Channel Package Management

453.3 EPG Source Management

574. Subscriber Management

574.1 Subscriber Management

694.2 Subscription Management

845. Monitoring

845.1 Play Session Monitoring

925.2 Operations Log

976. Client Applications

976.1 Catena Android App User Guide

Table of contents

- 2/101 - © Flussonic 2025

1. Products

1. Products

- 3/101 - © Flussonic 2025

2. Catena

2.0.1 Catena

Catena is a comprehensive IPTV service management solution consisting of server software and client applications for Smart TV, mobile devices,

and set-top boxes. The system is designed to deliver both paid and free television to end subscribers.

Catena client applications are available for the following platforms:

Samsung Tizen — application for Samsung Smart TV

LG WebOS — application for LG Smart TV

Android — application for Android TV, mobile devices, and tablets

Content is not included in the Catena delivery — it is always provided by the video streaming service operator.

Target Audience

Catena is designed for video streaming service operators who want to launch their own IPTV service. This can be:

Telecom operators — Internet service providers who want to offer their subscribers interactive television services

OTT operators — companies that provide video content over the Internet

Cable operators — traditional TV operators transitioning to IP technologies

Corporate clients — organizations creating their own internal TV services for employees or customers

Media companies — publishers and broadcasters who want to create a direct connection with their audience

Key Capabilities

Catena provides a complete set of tools for managing an IPTV service:

CONTENT MANAGEMENT

TV Channel Management — create, configure, and organize broadcast channels. Each channel has a unique name for streaming, a display title for

users, a logo, and a link to an EPG source

Channel Package Management — create tariff packages from groups of channels. Packages are used to sell channel bundles to subscribers

Electronic Program Guide (EPG) Management — connect and synchronize electronic program guide sources, display program schedules for each

channel

SUBSCRIBER MANAGEMENT

Subscriber Management — register subscribers, manage their data (name, phone), generate tokens for content playback

Subscription Management — assign channel packages to subscribers, manage content access, support both paid and free packages

MONITORING AND ANALYTICS

Playback Sessions — view current and historical viewing sessions: which channels subscribers are watching, from which devices, how much data

has been transferred

Operations Log — detailed history of all actions in the system (creating/deleting subscribers, changing subscriptions, etc.) with filtering and audit

capabilities

ADMINISTRATION

Portal Settings — configure service parameters: name, domain, branding (logo, description), API key management, free package configuration

Manager Management — create administrator accounts with different access levels: infrastructure management, subscriber management, content

management

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2. Catena

- 4/101 - © Flussonic 2025

Web Interface and API

Catena provides two ways to manage the system:

WEB INTERFACE (UI)

Through the web interface, administrators can:

Visually manage all entities — create, edit, and delete channels, packages, subscribers through a convenient graphical interface

View real-time statistics — see active viewing sessions, number of subscribers, channel popularity

Upload logos and images — add visual elements for channels and portal

Manage program guide — view and update EPG, link channels to program sources

Administer access — create managers with different permissions, manage API keys

Track operation history — view logs of all actions for audit and control

MANAGEMENT API

The API is designed for programmatic integration of Catena with the operator's external systems:

Subscriber Management Automation — integration with billing systems for automatic creation/blocking of subscribers on payment/non-payment

of services

CRM Integration — synchronization of subscriber data, subscriptions, and operations with the operator's CRM system

Dynamic Content Management — programmatic addition/removal of channels and packages, metadata updates

Analytics Retrieval — export viewing statistics for external analytics and reporting systems

EPG Updates — programmatic trigger for updating program guide from external sources

Portal Monitoring — programmatic reading of portal settings and status

The API is built on REST standards using JSON for data exchange. Authentication is performed through API keys (X-Auth-Token header), which can

be generated in the web interface. The API supports pagination for working with large amounts of data.

TYPICAL USE CASES

Small-scale operator:

Primarily uses the web interface for manual management of a small number of subscribers (up to several thousand)

Manually creates channels and packages

Registers subscribers through the UI when contacting support

Medium and large-scale operator:

Uses API for automatic synchronization with billing and CRM

Automates creation/blocking of subscribers when payment status changes

Uses the web interface for monitoring, analytics, and manual operations

Configures automatic EPG updates through API

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.0.1 Catena

- 5/101 - © Flussonic 2025

Documentation Structure

Catena documentation is organized into sections according to the operator's main tasks:

Quick Start — step-by-step guide for initial setup

Content Management — working with channels, packages, and EPG

Subscriber Management — registration and service of subscribers

Monitoring and Analytics — viewing statistics and sessions

Administration — portal configuration and access management

API Reference — complete reference for all API methods

Integration — examples of integration with external systems

If you are just starting to work with Catena, we recommend starting with the Quick Start section, which will guide you through the main stages of

system setup.

1.

2.

3.

4.

5.

6.

7.

2.0.1 Catena

- 6/101 - © Flussonic 2025

2.1 Portal Management

A portal is an independent branded domain with its own set of subscribers, channels, and packages in the Catena system. Portals allow managing

multiple IPTV services with different brands on a single infrastructure.

2.1.1 What is a Portal

A portal in Catena is an isolated space for a separate IPTV service with its own settings, subscribers, and content. Each portal represents an

independent branded service with its own domain, logo, and visual design.

Key concept:

Main portal characteristics:

Independent domain — each portal accessible via its own URL

Own branding — logo, name, description, visual design

Isolated data — subscribers of one portal not visible in another

Separate content — own set of channels, packages, EPG

Branded applications — ability to create mobile app for portal

Shared infrastructure — all portals run on same servers

Why portals are needed:

Multi-branding — managing multiple IPTV brands

White-label solutions — providing service under client's brand

Geographic separation — different portals for different regions

Audience segmentation — premium and budget services on one platform

Partner projects — separate portals for B2B partners

Testing environment — separate portal for testing new features

2.1.2 Managing Multiple Portals

Multi-tenancy Concept

One infrastructure — multiple portals:

All portals use the same streaming servers

Content can be shared or unique to portal

One manager can control multiple portals

Billing system can serve all portals

Catena Infrastructure
 ├── Portal "Netflix-like service" (myiptv.com)
 │ ├── Subscribers: 10,000
 │ ├── Channels: 200
 │ └── Branding: red logo, modern design
 ├── Portal "Regional provider" (region-tv.com)
 │ ├── Subscribers: 5,000
 │ ├── Channels: 150
 │ └── Branding: blue logo, classic style
 └── Portal "Sports service" (sport-tv.com)
 ├── Subscribers: 3,000
 ├── Channels: 50 (sports only)
 └── Branding: green logo, dynamic design

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

•

•

•

•

2.1 Portal Management

- 7/101 - © Flussonic 2025

Benefits:

Resource savings — one server for all portals

Centralized management — single admin panel

Shared content — same channels for different brands

Flexible marketing — different strategies for each portal

Scalability — easy to add new portals

One Manager — Multiple Portals

Scenario: IPTV business owner manages three brands

How access works:

Manager is created separately for each portal

One email can be used across different portals

On login, system shows list of available portals

Manager selects portal to work with

API key is bound to specific portal

Manager permission types:

isAdmin — infrastructure management (creating portals, servers)

canManage — full portal management (owner)

canManageSubscribers — subscriber and subscription management

canManageContent — channels, packages, EPG management

2.1.3 Main Portal Parameters

Technical Parameters

Portal ID

Automatically generated when creating portal

Format: base64-encoded Snowflake ID with +/= replaced by -_.

Example: pKl9SW3AAAE.

Used in all API requests

Links all entities (subscribers, channels, packages) to portal

Internal Name (Name)

Technical portal name in system

Visible only to administrators and portal owner

Used for identification in logs and control panel

Must be unique in system

Examples: catena-netflix , my-iptv-service , test-portal

•

•

•

•

•

Manager: admin@company.com
 ├── Portal 1: myiptv.com (owner, full access)
 ├── Portal 2: premium-tv.com (owner, full access)
 └── Portal 3: budget-tv.com (content admin, content management)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.1.3 Main Portal Parameters

- 8/101 - © Flussonic 2025

Domain

Domain name under which portal is accessible

Specified by portal owner as domain claim

Real DNS binding performed by system administrator

Used for branded mobile applications

Example: myiptv.com , tv.example.org

Owner ID

Identifier of manager — portal owner

Owner has full access to all settings

Can assign other managers

Set when creating portal

API Key

Unique key for Management API portal access

Generated automatically when creating portal

Used for authentication of all API requests

Can be regenerated via /portal/reset_api_key

Must be stored securely

Branding Parameters

Logo

URL or base64-encoded image of portal logo

Displayed in mobile apps and web interface

Seen by end users (subscribers)

Recommended format: PNG with transparency

Recommended size: 512x512px or higher

Title

Public portal name for end users

Displayed in applications, website, notifications

Examples: "My IPTV", "Premium TV Service", "Sport TV"

Description

Brief service description for users

Used in app stores, landing pages

Can contain slogan or brief benefits description

Example: "Best IPTV for the whole family. 200+ channels in HD quality"

Free Packages

Concept:

List of packages available to all portal subscribers automatically

No need to create subscription for each subscriber

Used for basic content, demo channels, trial period

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.1.3 Main Portal Parameters

- 9/101 - © Flussonic 2025

Applications:

Basic channels — public, freely available channels

Trial access — first month for all new subscribers

Promo content — advertising and informational channels

Loyalty program — bonus channels for all clients

Management:

2.1.4 Getting Portal Information

Via Web Interface

Log into Catena control panel

Select portal (if you have access to multiple)

Open "Portal Settings" section

View parameters:

Basic information (name, domain)

Branding (logo, description)

API key

Free packages list

Access permissions

Via Management API

Get current portal information:

Response:

•

•

•

•

Add package to free list
POST /portal/free-packages/{packageId}

Remove package from free list
DELETE /portal/free-packages/{packageId}

1.

2.

3.

4.

5.

6.

7.

8.

9.

curl -X GET https://your-catena-domain.com/tv-management/api/v1/portal \
 -H "X-Auth-Token: your-api-key"

{
 "portalId": "pKl9SW3AAAE.",
 "name": "my-iptv-service",
 "domain": "myiptv.com",
 "freePackages": ["basicKl9SW3AAAE.", "trialKl9SW3AAAE."],
 "branding": {
 "logo": "https://myiptv.com/logo.png",
 "title": "My IPTV Service",
 "description": "Premium IPTV streaming for everyone"
 },
 "apiKey": "secret_api_key_1234567890",
 "ownerId": "mKl9SW3AAAE.",
 "createdAt": "2024-01-15T10:00:00Z",
 "updatedAt": "2024-10-16T14:30:00Z",
 "flags": {
 "canManage": true,
 "canManageSubscribers": true,
 "canManageContent": true
 }
}

2.1.4 Getting Portal Information

- 10/101 - © Flussonic 2025

Response fields:

portalId — unique portal identifier

name — internal technical name

domain — portal domain name

freePackages — array of free package IDs

branding — branding parameters

apiKey — API key for authentication

ownerId — portal owner ID

createdAt/updatedAt — creation and update dates

flags — current manager's access permissions

2.1.5 Editing a Portal

Via Web Interface

Open "Portal Settings" section

Click "Edit"

Change parameters:

User-facing title (Title)

Service description (Description)

Logo URL (Logo)

Save changes

Important: Technical parameters (name, domain, portalId) usually not editable after creation.

Via Management API

Update portal parameters:

Response:

Updated Portal object with new values.

What can be changed:

Branding parameters (logo, title, description)

Free packages list (via separate endpoints)

What cannot be changed:

portalId — generated automatically

name — set on creation

domain — set on creation

ownerId — changed separately by administrator

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

curl -X PUT https://your-catena-domain.com/tv-management/api/v1/portal \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "my-iptv-service",
 "branding": {
 "logo": "https://myiptv.com/new-logo.png",
 "title": "My IPTV - New Name",
 "description": "Updated service description"
 }
 }'

•

•

•

•

•

•

2.1.5 Editing a Portal

- 11/101 - © Flussonic 2025

2.1.6 API Key Management

API Key Security

API key is a secret token for portal access. Handle it carefully:

Store in secure place (environment variables, secret manager)

Don't commit to Git repositories

Don't share with third parties

Regularly update (every 6-12 months)

Update immediately if compromise suspected

API Key Regeneration

When to regenerate:

API key accidentally pushed to public repository

Suspected unauthorized access

Employee with key access terminated

Scheduled update per security policy

Integration or billing system change

Via Web Interface:

Open "Portal Settings"

Go to "Security" section

Click "Generate New API Key"

Confirm action

Copy new key (old one stops working immediately)

Update key in all integrations

Via Management API:

Response:

Important:

Old API key stops working immediately

All current integrations with old key will start getting 401 error

Update key everywhere: billing, monitoring, scripts

Save new key in secure location

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

curl -X POST https://your-catena-domain.com/tv-management/api/v1/portal/reset_api_key \
 -H "X-Auth-Token: current-api-key"

{
 "portalId": "pKl9SW3AAAE.",
 "name": "my-iptv-service",
 "apiKey": "new_secret_api_key_0987654321",
 "branding": { ... },
 ...
}

•

•

•

•

2.1.6 API Key Management

- 12/101 - © Flussonic 2025

2.1.7 Managing Free Packages

Adding Free Package

Via Web Interface:

Open "Portal Settings"

Go to "Free Packages" section

Click "Add Package"

Select package from available list

Confirm addition

All portal subscribers immediately get access to this package's channels.

Via Management API:

Response: HTTP 201 Created

Removing Free Package

Via Web Interface:

Open "Portal Settings"

Go to "Free Packages" section

Find package in list

Click "Remove"

Confirm removal

Subscribers without explicit subscription to this package will lose access to its channels.

Via Management API:

Response: HTTP 201 Created

Important:

If subscriber has explicit subscription to package, they retain access

Removing from free doesn't delete the package itself

Changes take effect immediately

2.1.8 Typical Use Cases

Scenario 1: Multiple Brands on One Platform

Task: Company manages three IPTV brands

Structure:

1.

2.

3.

4.

5.

curl -X POST https://your-catena-domain.com/tv-management/api/v1/portal/free-packages/basicKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

1.

2.

3.

4.

5.

curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/portal/free-packages/basicKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

•

•

•

Company "IPTV Group"
├── Brand "Premium TV" (premium-tv.com)
│ ├── Target audience: premium segment
│ ├── Content: 300 HD/4K channels
│ ├── Price: from $20/month
│ └── Branding: gold logo, elegant design
│
├── Brand "Family TV" (family-tv.com)
│ ├── Target audience: families with kids

2.1.7 Managing Free Packages

- 13/101 - © Flussonic 2025

Benefits:

One streaming server for all brands

Centralized content management

Different marketing strategies

Isolated subscriber bases

Infrastructure cost savings

Implementation:

Create 3 portals in Catena

Configure branding for each

Distribute channels across portals

Create packages with different pricing

Integrate with unified billing system

Deploy branded mobile apps

Scenario 2: White-label Solution for Partners

Task: Provide IPTV platform to partners under their brand

Business model:

You — infrastructure and content provider

Partners — subscriber base and brand owners

Each partner gets their own portal

Partner pays per subscriber count or fixed fee

Example structure:

What partner gets:

Own portal with unique domain

Full control over branding

Access to your channel catalog

Branded mobile application

API for integration with their billing

Technical support from your team

│ ├── Content: 150 channels (movies, kids, general)
│ ├── Price: from $10/month
│ └── Branding: bright colors, friendly design
│
└── Brand "Sport TV" (sport-tv.com)
 ├── Target audience: sports fans
 ├── Content: 50 sports channels
 ├── Price: from $15/month
 └── Branding: dynamic, energetic style

•

•

•

•

•

1.

2.

3.

4.

5.

6.

•

•

•

•

Your platform: catena-platform.com

├── Partner 1: regional-provider.com
│ └── 5,000 subscribers
│
├── Partner 2: city-tv.com
│ └── 3,000 subscribers
│
└── Partner 3: corporate-tv.net
 └── 1,000 subscribers (corporate TV)

•

•

•

•

•

•

2.1.8 Typical Use Cases

- 14/101 - © Flussonic 2025

What you do:

Create portal for partner

Provide access to channels

Maintain infrastructure

Update EPG

Ensure stable operation

Bill the partner

Workflow for creating partner portal:

Partner registers in your system

You create portal with their domain

Partner configures branding (logo, colors, name)

You connect channels per tariff

Partner gets API key for integration

You create branded mobile app for partner

Partner starts attracting subscribers

Scenario 3: Geographic Separation

Task: Provide IPTV in different countries/regions

Why separate portals needed:

Different content due to licensing restrictions

Different interface languages

Different currencies and payment methods

Local channels for each region

Compliance with local legislation

Example:

Scenario 4: Testing Environment

Task: Safely test new features

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

•

•

•

•

•

International IPTV service

├── Portal "IPTV Russia" (iptv.ru)
│ ├── Content: Russian + international channels
│ ├── Language: Russian
│ ├── Currency: rubles
│ └── 50,000 subscribers
│
├── Portal "IPTV Europe" (iptv.eu)
│ ├── Content: European channels
│ ├── Languages: English, German, French
│ ├── Currency: euros
│ └── 30,000 subscribers
│
└── Portal "IPTV USA" (iptv.com)
 ├── Content: American channels
 ├── Language: English
 ├── Currency: dollars
 └── 20,000 subscribers

2.1.8 Typical Use Cases

- 15/101 - © Flussonic 2025

Solution:

Create separate portal test.myiptv.com

Use for internal testing

Test new channels, packages, features

Don't affect production portals

Benefits:

Complete isolation from production data

Ability to experiment

Integration testing

Training new employees

2.1.9 Branded Mobile Applications

Branded App Concept

Each portal can have separate mobile application with unique brand.

What branded application includes:

Portal logo as app icon

Portal name in App Store / Google Play

Portal color scheme in interface

Unique Bundle ID / Package Name

Connection to portal API via API key

Platforms:

iOS — Swift/SwiftUI app for iPhone/iPad

Android — Kotlin/Java app

Android TV — Smart TV version

Apple TV — Apple TV version

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.1.9 Branded Mobile Applications

- 16/101 - © Flussonic 2025

App Creation Process

Typical workflow:

You provide portal parameters:

Domain name (domain)

Logo (logo)

Title (title)

Color scheme

API endpoint

Developer creates application:

Brands interface according to design

Integrates with Catena API

Configures SMS authentication

Implements player for viewing

Store publication:

Registration in Apple Developer / Google Play Console

Preparing screenshots and description

Passing moderation

Publishing application

Subscribers download:

Find your app in store

Install on device

Login via SMS

Watch channels

Important:

iOS requires Apple Developer account ($99/year)

Android requires Google Play Console ($25 one-time)

App must comply with store rules

App updates go through moderation

2.1.10 Shared Infrastructure for Portals

Shared Streaming Servers

All portals use same servers for content delivery:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

•

•

•

•

┌─────────────────┐
│ Streaming │
│ Server │◄─────┐
│ (Flussonic) │ │
└─────────────────┘ │
 ▲ │
 │ │
 ┌────┴────┬──────────┴───────┐
 │ │ │
┌───┴───┐ ┌───┴───┐ ┌────┴────┐
│Portal1│ │Portal2│ ... │Portal N │
└───────┘ └───────┘ └─────────┘

2.1.10 Shared Infrastructure for Portals

- 17/101 - © Flussonic 2025

Benefits:

One source for channel → N portals

Traffic and CPU savings

Centralized stream management

Single monitoring point

Access control:

Streaming server checks subscriber's playback_token

Token contains portal_id information

Subscriber can only watch their portal's channels

Technically possible to provide one channel to multiple portals

Shared Channels for Multiple Portals

Scenario: One channel source for different brands

Example:

How it works:

Channel added to each portal separately

Each portal has its own channelId

But source URL is same

Streaming server caches stream

All portals receive stream from cache

Benefits:

One source → multiple uses

Licensing cost savings (depends on contract)

Centralized EPG update

Single quality monitoring point

2.1.11 Best Practices

Portal Naming

Internal name (name):

Use understandable technical names

Examples: company-premium , partner-acme , test-portal

Avoid spaces and special characters

Keep consistency: brand-segment or client_name

•

•

•

•

•

•

•

•

Source: "Discovery Channel" (rtmp://source.tv/discovery)
 │
 ┌─────────────┼─────────────┐
 │ │ │
Portal A Portal B Portal C
Channel: Channel: Channel:
"Discovery" "Discovery HD" "Discov"
(in "Science" (in premium (in basic
 package) package) package)

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

2.1.11 Best Practices

- 18/101 - © Flussonic 2025

Public name (title):

Use attractive marketing name

Examples: "Premium TV", "Family Television", "Sport TV+"

Consider target audience

Check name availability (trademark)

Content Organization

Channel distribution strategies:

Full duplication — all portals have same content

Easier to manage

Suitable for white-label without segmentation

Segmented content — different content for different portals

Premium portal: exclusive channels

Basic portal: standard set

Thematic portal: sports/movies/news only

Common base + unique content

Basic channels available everywhere

Premium channels only in expensive portals

Local channels in regional portals

Security

Protecting API keys:

Manager access permissions:

Grant minimum necessary permissions

Content admin doesn't need subscriber access

Support doesn't need API key access

Regularly review manager list

Remove access for terminated employees

Monitoring

What to track for each portal:

Number of active subscribers

Number of concurrent sessions

Popular channels

Login errors (failed SMS, invalid tokens)

API requests count and latency

Storage usage per portal

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

BAD - key in code
api_key = "secret_key_123456"

GOOD - key in environment variable
api_key = os.getenv('CATENA_API_KEY')

BETTER - key in secret manager
api_key = secrets_manager.get('catena_api_key')

•

•

•

•

•

•

•

•

•

•

•

2.1.11 Best Practices

- 19/101 - © Flussonic 2025

Tools:

Grafana dashboards with portal breakdown

Prometheus metrics with portal_id label

Alerts on anomalies (sudden subscriber drop)

Regular reports for portal owners

2.1.12 Troubleshooting

Subscribers Cannot Login

Possible causes:

Incorrect domain specified in application

API key expired after regeneration

Portal temporarily unavailable

SMS gateway not configured for portal

Solution:

Check domain in portal settings

Ensure API key is current

Check service status (API, SMS gateway)

Review authorization error logs

Test login from another app/browser

Channels Won't Play

Possible causes:

Streaming server issues

Channel not added to portal

Subscriber not subscribed to package with channel

Network issues on subscriber's side

Solution:

Check channel works on another portal

Ensure channel exists in this portal

Check subscriber's subscriptions

Review streaming server logs

Check subscriber's playback_token

API Returns 401 Unauthorized

Possible causes:

Invalid API key

API key was regenerated

Key passed in incorrect format

Key from different portal

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

2.1.12 Troubleshooting

- 20/101 - © Flussonic 2025

Solution:

Check API key currency: GET /portal

Ensure key in header: X-Auth-Token: your-key

Verify using correct portal's key

Regenerate key if needed

Two Portals See Each Other's Subscribers

Problem: Data isolation between portals violated

This should not happen by system design. If it does:

Immediately contact technical support

Verify using correct API key

Check not mixing portals in code

Review API request logs

Causes (rare):

System bug (requires fix)

Incorrect integration (one key used for different portals)

Client-side caching

2.1.13 See Also

Manager Management — creating users to manage portals

Subscriber Management — subscribers tied to specific portal

Package Management — packages created within portal

Channel Management — channels added to portals

Subscription Management — portal free packages

1.

2.

3.

4.

1.

2.

3.

4.

•

•

•

•

•

•

•

•

2.1.13 See Also

- 21/101 - © Flussonic 2025

2.2 Portal Manager Management

Managers are users who have access to the portal control panel in Catena. The manager system allows providing different access levels to various

employees for managing content, subscribers, and portal settings.

2.2.1 What is a Manager

A manager in Catena is a user account with permissions to manage a portal. Unlike subscribers (who watch channels), managers administrate the

system.

Key features:

Email and password authentication — login to control panel

Permission system — flexible permission configuration for each manager

Multiple portals — one email can manage multiple portals

Roles and authorities — from viewing statistics to full administration

Portal isolation — manager sees only their portal's data

Typical team structure:

2.2.2 Portal Owner vs Managers

Portal Owner

Important: Portal owner is a special role managed outside this Management API.

Owner characteristics:

Set when creating portal at infrastructure level

Cannot be changed via portal's Management API

Has full and unlimited portal access

Access rights don't apply to them (isAdmin, isContentAdmin, etc.)

Can create, modify, and delete other managers

Can assign any permissions to other managers

ownerId field in portal:

•

•

•

•

•

Portal "My IPTV Service"
├── Portal Owner (ownerId)
│ └── Assigned outside system, full access
├── Chief Administrator (isAdmin: true)
│ └── Infrastructure management
├── Content Manager (isContentAdmin: true)
│ └── Channel, package, EPG management
├── Subscriber Manager (isSubscriberAdmin: true)
│ └── Subscriber and subscription work
└── Support Operator (read-only)
 └── View data, no changes

•

•

•

•

•

•

{
 "portalId": "pKl9SW3AAAE.",
 "ownerId": "mKl9SW3AAAE.", // Owner ID
 "name": "my-portal"
}

2.2 Portal Manager Management

- 22/101 - © Flussonic 2025

Changing owner:

Performed by Catena system administrator

Not available via regular Management API

Requires technical support contact

Used when transferring portal to another person

Regular Managers

Managers created via API:

Created by portal owner or other administrators

Have limited permissions per settings

Can be modified or deleted by owner

Subject to permission system

Key difference:

2.2.3 Permission System

Access Levels

isAdmin — infrastructure administrator

Technical portal settings management

Creating and deleting other managers

Changing critical parameters

Server settings access

Doesn't automatically grant content or subscriber access

isContentAdmin — content administrator

Channel management (create, edit, delete)

Channel package management

EPG source management

Channel-package link configuration

No subscriber access

isSubscriberAdmin — subscriber administrator

Subscriber management (create, edit, delete)

Package subscription management

Viewing playback sessions

Viewing operations log

Cannot modify channels and packages

•

•

•

•

•

•

•

•

Characteristic Owner Regular Manager

Creation Outside Management API Via Management API

Permission changes Not applicable Configured by owner

Deletion Only by system admin By portal owner

Access Always full According to permissions

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.3 Permission System

- 23/101 - © Flussonic 2025

Permission combination:

Manager can have multiple permissions simultaneously:

This grants full access to all portal functions (except owner change).

2.2.4 Creating a Manager

Via Management API

Create new manager:

Response:

Note: password field is not returned in response.

2.2.5 Login

Authentication Process

Managers login via email and password:

Response:

{
 "isAdmin": true,
 "isContentAdmin": true,
 "isSubscriberAdmin": true
}

curl -X POST https://your-catena-domain.com/tv-management/api/v1/managers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "email": "content@company.com",
 "name": "Content Manager",
 "password": "SecurePassword123!",
 "isAdmin": false,
 "isContentAdmin": true,
 "isSubscriberAdmin": false
 }'

{
 "managerId": "mKl9SW3AAAB.",
 "portalId": "pKl9SW3AAAE.",
 "email": "content@company.com",
 "name": "Content Manager",
 "isAdmin": false,
 "isContentAdmin": true,
 "isSubscriberAdmin": false,
 "createdAt": "2024-10-16T15:00:00Z",
 "updatedAt": "2024-10-16T15:00:00Z"
}

curl -X POST https://your-catena-domain.com/tv-management/api/v1/login \
 -H "Content-Type: application/json" \
 -d '{
 "email": "admin@company.com",
 "password": "password123"
 }'

{
 "portals": [
 {
 "portalId": "pKl9SW3AAAE.",
 "portalName": "My IPTV Service",
 "sessionId": "sessionKl9SW3AAAE."
 },
 {
 "portalId": "pKl9SW3AAAB.",
 "portalName": "Premium TV",
 "sessionId": "sessionKl9SW3AAAB."
 }
]
}

2.2.4 Creating a Manager

- 24/101 - © Flussonic 2025

Multiple portals:

If email used in multiple portals, list of all available is returned

Manager selects portal to work with

Each portal has its own sessionId for further work

2.2.6 Best Practices

Password Security

Password requirements:

Minimum 8 characters

Upper and lowercase letters

Numbers and special characters

Don't use common passwords

Change every 90 days

Permission Management

Principle of least privilege:

Offboarding

Checklist when employee leaves:

☑ Immediately delete manager account

☑ Check if they were portal owner

☑ Change portal API keys (if had access)

☑ Check operations log for suspicious actions

☑ Notify team about access changes

2.2.7 Troubleshooting

Cannot Login

Possible causes:

Incorrect email or password

Account deleted

Account blocked

Email specified for different portal

Cannot Change Portal Owner

This is correct behavior:

Portal owner managed outside Management API

Owner change is critical operation

Requires Catena system administrator contact

Cannot be performed independently

•

•

•

•

•

•

•

•

DON'T grant more permissions than needed for work

1.

2.

3.

4.

5.

1.

2.

3.

4.

•

•

•

•

2.2.6 Best Practices

- 25/101 - © Flussonic 2025

Owner change procedure:

Contact Catena technical support

Provide:

Portal ID

Current owner ID

New owner ID

Justification

Administrator performs change at system level

New owner receives full access

2.2.8 See Also

Portal Management — portal owner and their role

Operations Log — manager action audit

Subscriber Management — what managers with isSubscriberAdmin can do

Channel Management — what managers with isContentAdmin can do

1.

2.

3.

4.

5.

6.

7.

8.

•

•

•

•

2.2.8 See Also

- 26/101 - © Flussonic 2025

3. Content Management

3.1 TV Channel Management

TV channels are the basic content unit in the Catena system. Each channel represents a separate video content stream that is delivered to

subscribers through client applications.

3.1.1 What is a Channel in Catena

A channel in Catena is an entity that combines:

Technical parameters — unique identifier and name for the streaming server

Visual presentation — display title and logo for users

Program guide — link to EPG (Electronic Program Guide) source

Pricing — inclusion in channel packages for selling to subscribers

It's important to understand that Catena does not handle direct video stream delivery — that's the streaming server's job (e.g., Flussonic Media

Server). Catena manages channel metadata and access rights.

3.1.2 Main Channel Parameters

Technical Parameters

Channel ID

Automatically generated when creating a channel

Format: base64-encoded Snowflake ID with +/= replaced by -_.

Example: aKl9SW3AAAE.

Used for programmatic access via API

Not editable after creation

Streaming Name (Name)

Unique technical channel name within the portal

Used by the streaming server to identify the stream

Requirements:

Only Latin letters, digits, hyphen and underscore: [a-zA-Z0-9_-]

Length from 2 to 20 characters

Must be unique within your portal

Examples: sport1 , news-hd , first_channel

Display Parameters

User Title (Title)

Localized channel name that viewers see

Can contain any characters, including Cyrillic

Examples: First Channel , Sport HD , News 24

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3. Content Management

- 27/101 - © Flussonic 2025

Logo

Channel image for display in client applications

Format: PNG, transparent background recommended

Uploaded as binary data (base64)

Available through a separate endpoint: GET /channels/{channelId}/logo

Optimal size: 300x300 pixels

EPG Integration

EPG Source Name

Name of the electronic program guide source

References a previously created EPG Source in the system

One EPG source can be used for multiple channels

EPG Channel Name

Channel identifier within the EPG source

Used to match your channel with the program guide from the EPG file

Must exactly match the channel name in the XML EPG

Link Example: If in your EPG file the channel is called perviy-kanal , then in the EPG Channel Name field you need to specify exactly perviy-kanal ,

even if in Catena your channel is called first_channel .

3.1.3 Creating a Channel

Via Web Interface

Open the "Channels" section in the Catena control panel

Click the "Create Channel" button

Fill in required fields:

Name — technical name for the streaming server (in Latin)

Title — name to display to users

Fill in additional fields (optional):

Logo — upload channel image (PNG)

EPG Source Name — select program guide source

EPG Channel Name — specify channel name in the EPG source

Save the channel

After creation, the channel will receive a unique ID and will be available for adding to packages.

Via Management API

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

curl -X POST https://your-catena-domain.com/tv-management/api/v1/channels \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "sport1",
 "title": "Sport HD",
 "epgSourceName": "main-epg",
 "epgChannelName": "sport-channel-1"
 }'

3.1.3 Creating a Channel

- 28/101 - © Flussonic 2025

Response:

3.1.4 Viewing Channel List

Via Web Interface

The "Channels" section displays a table with all portal channels:

Logo — channel logo thumbnail

Title — display name (Title)

Technical Name — streaming name (Name)

Packages — list of packages that include the channel

EPG — information about the connected program guide source

Actions — edit and delete buttons

Via Management API

Get list of all channels:

Response:

Pagination: To get the next page, use the cursor parameter:

3.1.5 Editing a Channel

Via Web Interface

Open the channel list

Find the needed channel and click the "Edit" button

Change parameters:

Title — can change the display name

Logo — upload new image

EPG Source Name / EPG Channel Name — change link to program guide

{
 "channelId": "aKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "name": "sport1",
 "title": "Sport HD",
 "epgSourceName": "main-epg",
 "epgChannelName": "sport-channel-1",
 "packages": []
}

•

•

•

•

•

•

curl -X GET https://your-catena-domain.com/tv-management/api/v1/channels \
 -H "X-Auth-Token: your-api-key"

{
 "channels": [
 {
 "channelId": "aKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "name": "sport1",
 "title": "Sport HD",
 "packages": ["basic", "premium"],
 "epgSourceName": "main-epg",
 "epgChannelName": "sport-channel-1"
 }
],
 "next": "cursor-for-next-page"
}

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/channels?cursor=cursor-for-next-page" \
 -H "X-Auth-Token: your-api-key"

1.

2.

3.

4.

5.

6.

3.1.4 Viewing Channel List

- 29/101 - © Flussonic 2025

Save changes

Important: The name field (technical name) cannot be changed after channel creation. If you need to change the technical name, create a new

channel and delete the old one.

Via Management API

3.1.6 Uploading and Getting Logo

Uploading Logo via API

When creating or updating a channel, the logo is passed in the logo field as a base64 string:

Getting Logo

The logo is available through a separate endpoint:

This URL can be used in client applications to display the logo.

3.1.7 Deleting a Channel

Via Web Interface

Open the channel list

Find the channel to delete

Click the "Delete" button

Confirm deletion

Warning: When deleting a channel, it will be automatically removed from all packages it was included in.

Via Management API

3.1.8 Channel-Package Relationship

A channel by itself is not accessible to subscribers. To provide access to a channel, it needs to be included in a channel package.

7.

curl -X PUT https://your-catena-domain.com/tv-management/api/v1/channels/aKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "sport1",
 "title": "Sport Full HD",
 "epgSourceName": "new-epg-source",
 "epgChannelName": "sport-hd-channel"
 }'

curl -X PUT https://your-catena-domain.com/tv-management/api/v1/channels/aKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "sport1",
 "title": "Sport HD",
 "logo": "..."
 }'

curl -X GET https://your-catena-domain.com/tv-management/api/v1/channels/aKl9SW3AAAE./logo \
 -H "X-Auth-Token: your-api-key" \
 --output channel-logo.png

1.

2.

3.

4.

curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/channels/aKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

3.1.6 Uploading and Getting Logo

- 30/101 - © Flussonic 2025

The packages field in the channel (read-only): When getting channel information, the packages field contains a list of package names that include

the channel. This field is read-only and is automatically updated when adding/removing a channel to/from packages via the channel-package

relationship management API.

Example:

3.1.9 Channel-EPG Relationship

How EPG Integration Works

Create an EPG source in the EPG Sources section

Specify the URL of the XML file with the program guide

Start synchronization of EPG data

In the channel settings, specify:

epgSourceName — name of the created EPG source

epgChannelName — channel name as specified in the XML EPG

Channel Mapping

EPG XML structure example:

In Catena specify:

EPG Source Name: main-epg (name of the source you created)

EPG Channel Name: perviy-kanal (value of the id or display-name attribute from XML)

After this, the program guide will be automatically available for this channel in client applications.

3.1.10 Typical Use Cases

Launching a New Channel

Task: Add a new sports channel to the service

Steps:

Create a channel in Catena with the name sport-premium

Upload the channel logo

Configure EPG link (if program guide is available)

Add the channel to one or more packages

Configure the corresponding stream on the streaming server with the name sport-premium

Bulk Adding Channels

Task: Add 50 channels from a new content provider

{
 "channelId": "aKl9SW3AAAE.",
 "name": "sport1",
 "title": "Sport HD",
 "packages": ["basic", "premium", "sport-package"]
}

1.

2.

3.

4.

5.

6.

<tv>
 <channel id="perviy-kanal">
 <display-name>First Channel</display-name>
 </channel>
 <programme start="20241015120000" stop="20241015130000" channel="perviy-kanal">
 <title lang="en">News</title>
 </programme>
</tv>

•

•

1.

2.

3.

4.

5.

3.1.9 Channel-EPG Relationship

- 31/101 - © Flussonic 2025

Solution via API:

Prepare CSV or JSON with channel data

Create a script for automatic channel creation via API

Upload logos for each channel

Configure EPG mapping

Group channels into thematic packages

Updating EPG for Channels

Task: Change EPG source for a group of channels

Steps:

Create a new EPG Source with current data

Update channels, specifying the new epgSourceName

Check the correctness of epgChannelName mapping

Start EPG update

Channel Rebranding

Task: Change channel name and logo

Steps:

Open channel editing

Update the title field with the new name

Upload a new logo

Save changes

Changes will automatically appear in client applications on the next data update

3.1.11 Best Practices

Channel Naming

Name (technical name):

Use short, clear names: sport1 , news , movies-hd

Avoid special characters except hyphen and underscore

Add suffixes for HD/SD versions: sport-hd , sport-sd

Title (display name):

Use full, clear names: "Sport HD", "News 24"

Can use any characters and emoji

Indicate quality in the name: "4K", "HD", "SD" (if important)

Channel Organization

Group channels logically by themes, using packages

Use a consistent style for logos (size, background, format)

Keep EPG data current

Document technical channel mapping

1.

2.

3.

4.

5.

1.

2.

3.

4.

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

•

•

•

3.1.11 Best Practices

- 32/101 - © Flussonic 2025

Logo Management

Size: optimal 300x300 pixels

Format: PNG with transparent background

File size: no more than 100 KB for fast loading

Consistent style: use the same style for all logos

Streaming Server Integration

Remember that the technical channel name in Catena must match the stream name on the streaming server:

Catena: name: "sport1"

Flussonic: stream must be named sport1

This ensures proper operation of access tokens and viewing analytics.

3.1.12 Troubleshooting

Channel Not Displayed in Application

Possible causes:

Channel is not included in any package

Subscriber doesn't have a subscription to a package with this channel

Corresponding broadcast is not configured on the streaming server

Solution:

Check that the channel is added to a package

Make sure the subscriber is subscribed to this package

Verify that the streaming server is delivering a stream with the corresponding name

EPG Not Displayed for Channel

Possible causes:

Incorrect epgChannelName specified

EPG Source not updated or contains errors

No data for this channel in the EPG XML

Solution:

Open the XML EPG and find the correct channel identifier

Update epgChannelName in the channel settings

Start forced EPG update

Check EPG update logs for errors

"Name must be unique" Error

Cause: A channel with this technical name already exists in your portal

Solution:

Use a different technical name

Or delete the existing channel with that name (if no longer needed)

•

•

•

•

•

•

•

•

•

1.

2.

3.

•

•

•

1.

2.

3.

4.

•

•

3.1.12 Troubleshooting

- 33/101 - © Flussonic 2025

Logo Won't Upload

Possible causes:

File is too large

Unsupported image format

Base64 encoding error

Solution:

Use PNG format

Compress the image to size < 100 KB

Check base64 encoding correctness

3.1.13 See Also

Channel Package Management — grouping channels for sale

EPG Management — configuring electronic program guide

Subscriber Management — providing access to channels

API Reference — complete API documentation for channels

•

•

•

•

•

•

•

•

•

•

3.1.13 See Also

- 34/101 - © Flussonic 2025

3.2 Channel Package Management

Channel packages are groups of TV channels bundled together for selling to subscribers. Packages allow you to create various pricing plans and

monetize your IPTV service.

3.2.1 What is a Channel Package

A channel package in Catena is a named group of TV channels that can be assigned to subscribers. Packages allow you to:

Create pricing plans — group channels by themes (sports, movies, news) or access levels (basic, premium)

Monetize the service — sell access to channel packages to subscribers

Manage access — provide different subscribers with access to different sets of channels

Simplify administration — assign packages instead of managing access to each channel individually

Important concept: A channel by itself is not accessible to subscribers. Access to a channel is provided only through packages that the subscriber is

subscribed to.

3.2.2 Main Package Parameters

Technical Parameters

Package ID

Automatically generated when creating a package

Format: base64-encoded Snowflake ID with +/= replaced by -_.

Example: aKl9SW3AAAE.

Used for programmatic access via API

Not editable after creation

Package Name (Name)

Unique technical package name within the portal

Used in the system to identify the package

Requirements:

Only Latin letters, digits, hyphen and underscore: [a-zA-Z0-9_-]

Length from 2 to 20 characters

Must be unique within your portal

Examples: basic , premium , sport-pack , movies_hd

Portal ID

Identifier of the portal the package belongs to

Automatically set upon creation

Display Parameters

Description

Text description of the package for administrators

Can contain information about package content, pricing, target audience

Not a required field

Examples: "Basic package of 30 channels", "Premium sports channels in HD quality"

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.2 Channel Package Management

- 35/101 - © Flussonic 2025

Package Content

Channel List (Channels)

Read-only field

Contains names of all channels included in the package

Automatically updated when adding/removing channels via relationship management API

Example: ["sport1", "sport2", "news", "movies-hd"]

3.2.3 Creating a Package

Via Web Interface

Open the "Packages" section in the Catena control panel

Click the "Create Package" button

Fill in required fields:

Name — technical package name (in Latin)

Description — package description (optional)

Save the package

Add channels to the package through the composition management section

After creation, the package will receive a unique ID and will be available for assignment to subscribers.

Via Management API

Response:

3.2.4 Viewing Package List

Via Web Interface

The "Packages" section displays a table with all portal packages:

Name — package name (Name)

Description — text package description

Channel Count — how many channels are in the package

Subscribers — number of subscribers with this package

Actions — edit and delete buttons

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

curl -X POST https://your-catena-domain.com/tv-management/api/v1/packages \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "premium",
 "description": "Premium package with HD channels"
 }'

{
 "packageId": "pKl9SW3AAAE.",
 "portalId": "portal123",
 "name": "premium",
 "description": "Premium package with HD channels",
 "channels": []
}

•

•

•

•

•

3.2.3 Creating a Package

- 36/101 - © Flussonic 2025

Via Management API

Get list of all packages:

Response:

Pagination:

To get the next page, use the cursor parameter:

3.2.5 Getting Package Information

Via Management API

Get package by ID:

Response:

3.2.6 Editing a Package

Via Web Interface

Open the package list

Find the needed package and click the "Edit" button

Change parameters:

Name — technical name (better not to change after creation)

Description — package description

Save changes

Note: Changing the channel composition of a package is done separately through channel-package relationship management.

curl -X GET https://your-catena-domain.com/tv-management/api/v1/packages \
 -H "X-Auth-Token: your-api-key"

{
 "packages": [
 {
 "packageId": "pKl9SW3AAAE.",
 "portalId": "portal123",
 "name": "premium",
 "description": "Premium package with HD channels",
 "channels": ["sport1", "sport2", "news-hd", "movies-4k"]
 },
 {
 "packageId": "bKl9SW3AAAE.",
 "portalId": "portal123",
 "name": "basic",
 "description": "Basic channel package",
 "channels": ["news", "general"]
 }
],
 "next": "cursor-for-next-page"
}

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/packages?cursor=cursor-for-next-page" \
 -H "X-Auth-Token: your-api-key"

curl -X GET https://your-catena-domain.com/tv-management/api/v1/packages/pKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

{
 "packageId": "pKl9SW3AAAE.",
 "portalId": "portal123",
 "name": "premium",
 "description": "Premium package with HD channels",
 "channels": ["sport1", "sport2", "news-hd", "movies-4k"]
}

1.

2.

3.

4.

5.

6.

3.2.5 Getting Package Information

- 37/101 - © Flussonic 2025

Via Management API

3.2.7 Deleting a Package

Via Web Interface

Open the package list

Find the package to delete

Click the "Delete" button

Confirm deletion

Warning: When deleting a package:

All subscribers will lose access to channels from this package (if they don't have other packages with these channels)

Relationships between the package and channels will be removed

Relationships between the package and subscribers will be removed

Via Management API

3.2.8 Managing Package Composition

Adding a Channel to Package

Via Management API:

Response:

After adding:

The channel will be displayed in the package's channels field

The package will be displayed in the channel's packages field

All subscribers with this package will receive access to the added channel

curl -X PUT https://your-catena-domain.com/tv-management/api/v1/packages/pKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "premium",
 "description": "Premium package with HD and 4K channels"
 }'

1.

2.

3.

4.

•

•

•

curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/packages/pKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

curl -X POST https://your-catena-domain.com/tv-management/api/v1/channels-packages \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "channelId": "cKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE.",
 "portalId": "portal123"
 }'

{
 "channelId": "cKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE.",
 "portalId": "portal123"
}

•

•

•

3.2.7 Deleting a Package

- 38/101 - © Flussonic 2025

Removing a Channel from Package

Via Management API:

Important: Removing a channel from a package does not delete the channel itself from the system, only breaks the relationship between the channel

and package.

Bulk Channel Management

To add multiple channels to a package, use sequential API calls:

3.2.9 Assigning Packages to Subscribers

For more details on assigning packages to subscribers, see the Subscription Management section.

Adding a Package to Subscriber

After assigning a package to a subscriber:

The subscriber will receive access to all channels from this package

The package will appear in the subscriber's package list

Access will be provided in all client applications

Removing a Package from Subscriber

3.2.10 Free Packages

Free packages are packages that are automatically available to all portal subscribers without the need for explicit assignment.

curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/channels-packages \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "channelId": "cKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE.",
 "portalId": "portal123"
 }'

Add channel 1
curl -X POST https://your-catena-domain.com/tv-management/api/v1/channels-packages \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{"channelId": "channel1", "packageId": "premium", "portalId": "portal123"}'

Add channel 2
curl -X POST https://your-catena-domain.com/tv-management/api/v1/channels-packages \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{"channelId": "channel2", "packageId": "premium", "portalId": "portal123"}'

curl -X POST https://your-catena-domain.com/tv-management/api/v1/packages-subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "packageId": "pKl9SW3AAAE.",
 "subscriberId": "sKl9SW3AAAE.",
 "portalId": "portal123"
 }'

•

•

•

curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/packages-subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "packageId": "pKl9SW3AAAE.",
 "subscriberId": "sKl9SW3AAAE.",
 "portalId": "portal123"
 }'

3.2.9 Assigning Packages to Subscribers

- 39/101 - © Flussonic 2025

How It Works

Free packages are configured at the portal level:

Administrator adds a package to the portal's free packages list

All subscribers automatically receive access to channels from free packages

No explicit assignment of the package to each subscriber is required

Typical Usage:

Trial period — provide a basic set of channels to all new subscribers

Free channels — open channels available to everyone (news, public channels)

Demo content — show service capabilities before purchasing a subscription

Adding Package to Free List

After adding to the free list:

All existing and new subscribers will receive access to channels from this package

The package will be displayed as free in the portal settings

Removing Package from Free List

Important: Removing a package from free packages does not delete the package itself, only removes automatic access for all subscribers.

3.2.11 Typical Use Cases

Creating Basic Pricing Grid

Task: Create three subscription levels: Basic, Standard, Premium

Steps:

Create three packages:

basic — 30 basic channels

standard — 50 channels (basic + entertainment)

premium — 80 channels (all + sports and movies in HD)

Fill packages with channels:

Basic: news, general, music

Standard: basic + series, documentaries

Premium: standard + sports HD, movies 4K, exclusive

Set up free package:

Create a trial package with 5 open channels

Add it to the portal's free packages list

Assign packages to subscribers depending on their subscription

•

•

•

•

•

•

curl -X POST https://your-catena-domain.com/tv-management/api/v1/portal/free-packages/pKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

•

•

curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/portal/free-packages/pKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

3.2.11 Typical Use Cases

- 40/101 - © Flussonic 2025

Thematic Packages

Task: Create thematic add-on packages

Package Examples:

sport-package — all sports channels

kids-package — children's channels

movies-package — movie channels

news-package — news channels

Advantages:

Subscriber can purchase topics of interest in addition to basic subscription

More flexible monetization

Personalized offering

Regional Packages

Task: Provide different sets of channels for different regions

Solution:

Create regional packages:

region-moscow — Moscow regional channels

region-spb — St. Petersburg channels

region-south — southern Russia channels

Assign the appropriate regional package when registering a subscriber

Subscriber will receive basic package + regional

Temporary Promotions

Task: Conduct a promo campaign with extended access

Steps:

Create a temporary package promo-may

Add premium channels to it

Assign the package to all active subscribers

Remove the package from all subscribers at the end of the campaign

3.2.12 Best Practices

Planning Package Structure

Naming Recommendations:

Use clear technical names: basic , premium , sport-hd

Avoid using versions in the name: not premium-v2 , but create a new package

Use prefixes for grouping: addon-sport , addon-kids , addon-movies

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

•

•

•

3.2.12 Best Practices

- 41/101 - © Flussonic 2025

Pricing Grid Structure:

Basic level — minimum set to start using the service

Mid-level — optimal price/channel count ratio

Premium level — maximum set with all available channels

Add-on packages — thematic add-ons to main packages

Change Management

When changing package composition:

Inform subscribers about adding new channels

Warn in advance about removing channels from the package

Maintain documentation on each package composition

Keep history of changes for analytics

When changing pricing:

Don't change the technical package name when changing price

Use the billing system to manage prices

Ensure smooth transition for existing subscribers

Monitoring and Analytics

Track metrics:

Number of subscribers on each package

Channel popularity within packages

Conversion from free package to paid

Subscriber churn when changing package composition

Use data for optimization:

Form packages based on channel popularity

Test different channel combinations

Adjust package composition based on analytics results

Billing Integration

Recommendations:

Use technical package name (name) as identifier in billing system

Synchronize package assignment/removal with payments via API

Automate access blocking on non-payment

Set up webhooks for subscription change notifications

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.2.12 Best Practices

- 42/101 - © Flussonic 2025

3.2.13 Troubleshooting

Subscriber Doesn't See Channels from Package

Possible causes:

Package is not assigned to subscriber

Package has no channels (empty package)

Data synchronization issues in client application

Solution:

Check subscriber's package list via API

Make sure the package contains channels

Verify that channels are properly configured on streaming server

Restart client application to update data

Channels Are Duplicated in Subscriber's List

Cause: Channel is included in multiple packages assigned to the subscriber

This is normal behavior:

Subscriber can have multiple packages

Channel can be included in multiple packages simultaneously

Client application should deduplicate channel list

Solution: Make sure the client application correctly handles duplicates.

Error Adding Channel to Package

Possible causes:

Incorrect channelId or packageId

Channel is already in this package

Channel or package belong to a different portal

Solution:

Check channel and package existence

Make sure portalId matches for channel, package and request

Check if this channel is already added to the package

Package Won't Delete

Possible causes:

Package is assigned to subscribers

Package is in the portal's free packages list

Insufficient permissions for deletion

Solution:

First remove the package from all subscribers

Remove package from free list (if it's there)

Then delete the package itself

•

•

•

1.

2.

3.

4.

•

•

•

•

•

•

1.

2.

3.

•

•

•

1.

2.

3.

3.2.13 Troubleshooting

- 43/101 - © Flussonic 2025

Free Package Not Working

Possible causes:

Package is not added to portal's free packages list

Subscriber is explicitly blocked or not activated

Package is empty (contains no channels)

Solution:

Check the free packages list in portal settings

Make sure the subscriber is active

Verify the presence of channels in the package

3.2.14 See Also

Channel Management — creating and configuring TV channels

Subscriber Management — registration and subscriber management

Subscription Management — assigning packages to subscribers

Portal Settings — managing free packages

API Reference — complete package API documentation

•

•

•

1.

2.

3.

•

•

•

•

•

3.2.14 See Also

- 44/101 - © Flussonic 2025

3.3 EPG Source Management

EPG sources (Electronic Program Guide) provide program information for each channel: program names, start and end times, descriptions, genres,

and age ratings.

3.3.1 What is an EPG Source

An EPG source in Catena is a link to an external XML file with TV program schedules. The system periodically downloads this file and synchronizes

program data for display in client applications.

Key capabilities:

Automatic synchronization — regular download and update of program guide

Multiple source support — different EPG sources for different channel groups

Download monitoring — tracking status and results of EPG updates

Program viewing — retrieving schedules via API for integration

Typical workflow:

Create an EPG source with XML file URL specified

Configure automatic update period

Link channels to EPG source (in channel settings)

System automatically downloads and updates program guide

Subscribers see current program guide in applications

3.3.2 Main EPG Source Parameters

Technical Parameters

Source ID (EPG Source ID)

Automatically generated when creating a source

Format: base64-encoded Snowflake ID with +/= replaced by -_.

Example: aKl9SW3AAAE.

Used for programmatic access via API

Not editable after creation

Source Name (Name)

Unique technical name of the EPG source

Used for identification in the system and in channel settings

Examples: main-epg , sports-epg , xmltv-provider

Portal ID

Identifier of the portal the source belongs to

Automatically set upon creation

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

•

3.3 EPG Source Management

- 45/101 - © Flussonic 2025

Download Parameters

Source URL (URL)

Full URL to XML file with program guide

Supported protocols: HTTP, HTTPS

Example: https://epg.example.com/epg.xml

Required field

Update Period (Period)

Interval in days for automatic EPG update

Example: 7 — update every 7 days

Minimum value: 1 day

If not specified, default value is used

The system automatically downloads EPG according to the specified period without manual intervention

Last Download Result

Download Information (Last Fetch Result)

The last_fetch_result field contains information about the last EPG update:

fetched_at — time of last download (ISO 8601)

job_id — download job identifier

status — download status:

success — successfully downloaded

error — download error

timeout — timeout exceeded

message — text message about result

channels — number of updated channels

foundPrograms — number of programs found in XML

importedPrograms — number of imported programs

deletedPrograms — number of deleted old programs

fetchDuration — XML download time in seconds

importDuration — data import time in seconds

3.3.3 Creating an EPG Source

Via Web Interface

Open the "EPG Sources" section in the Catena control panel

Click the "Create EPG Source" button

Fill in required fields:

Name — technical source name (e.g., main-epg)

URL — full URL to EPG XML file

Fill in optional fields:

Period — update period in days (e.g., 7)

Save the source

Start initial download via "Update Now" button

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

8.

9.

3.3.3 Creating an EPG Source

- 46/101 - © Flussonic 2025

After creation, the source will receive a unique ID and will be available for linking to channels.

Via Management API

Response:

3.3.4 Viewing EPG Source List

Via Web Interface

The "EPG Sources" section displays a table with all sources:

Name — source name (Name)

URL — XML file address

Period — update interval in days

Last Update — date and time of last download

Status — result of last download (success/error/timeout)

Programs — number of imported programs

Actions — update, edit, and delete buttons

Via Management API

Get list of all EPG sources:

Response:

curl -X POST https://your-catena-domain.com/tv-management/api/v1/epg-sources \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "main-epg",
 "url": "https://epg.example.com/xmltv.xml",
 "period": 7
 }'

{
 "epgSourceId": "eKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "name": "main-epg",
 "url": "https://epg.example.com/xmltv.xml",
 "period": 7,
 "last_fetch_result": null
}

•

•

•

•

•

•

•

curl -X GET https://your-catena-domain.com/tv-management/api/v1/epg-sources \
 -H "X-Auth-Token: your-api-key"

{
 "epgSources": [
 {
 "epgSourceId": "eKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "name": "main-epg",
 "url": "https://epg.example.com/xmltv.xml",
 "period": 7,
 "last_fetch_result": {
 "epgSourceId": "eKl9SW3AAAE.",
 "fetched_at": "2024-10-16T10:30:00Z",
 "job_id": "job123",
 "status": "success",
 "message": "EPG source fetched successfully",
 "channels": 25,
 "foundPrograms": 5000,
 "importedPrograms": 4950,
 "deletedPrograms": 2100,
 "fetchDuration": 5,
 "importDuration": 12
 }
 }
]
}

3.3.4 Viewing EPG Source List

- 47/101 - © Flussonic 2025

3.3.5 Getting Source Information

Via Management API

Response: Similar to EPG source object from the list.

3.3.6 Editing an EPG Source

Via Web Interface

Open the EPG sources list

Find the needed source and click the "Edit" button

Change parameters:

Name — technical name

URL — XML file address

Period — update period

Save changes

Note: Changing URL or period does not trigger automatic update — use "Update Now" button for immediate download.

Via Management API

3.3.7 Forced EPG Update

You can trigger an unscheduled EPG update at any time.

Via Web Interface

Open the EPG sources list

Find the needed source

Click the "Update Now" button

Wait for completion — process may take from several seconds to minutes

Via Management API

Response:

Important: Update is performed asynchronously. Use jobId to track progress or check the last_fetch_result field after some time.

curl -X GET https://your-catena-domain.com/tv-management/api/v1/epg-sources/eKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

1.

2.

3.

4.

5.

6.

7.

curl -X PUT https://your-catena-domain.com/tv-management/api/v1/epg-sources/eKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "main-epg",
 "url": "https://epg.example.com/updated-xmltv.xml",
 "period": 3
 }'

1.

2.

3.

4.

curl -X POST https://your-catena-domain.com/tv-management/api/v1/epg-sources/eKl9SW3AAAE./update \
 -H "X-Auth-Token: your-api-key"

{
 "jobId": "job456"
}

3.3.5 Getting Source Information

- 48/101 - © Flussonic 2025

3.3.8 Deleting an EPG Source

Via Web Interface

Open the EPG sources list

Find the source to delete

Click the "Delete" button

Confirm deletion

Warning: When deleting an EPG source:

All programs from this source will be deleted

Channels linked to this source will lose EPG connection

Subscribers will stop seeing program guide for these channels

Via Management API

3.3.9 Viewing Programs from EPG Source

You can get a list of programs for analysis or debugging.

Getting Programs via API

Get all programs from source:

Filter by date:

Filter by channel:

Combined filtering:

Response:

1.

2.

3.

4.

•

•

•

curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/epg-sources/eKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

curl -X GET https://your-catena-domain.com/tv-management/api/v1/epg-sources/eKl9SW3AAAE./programs \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/epg-sources/eKl9SW3AAAE./programs?date=2024-10-16" \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/epg-sources/eKl9SW3AAAE./programs?epgChannelName=channel1" \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/epg-sources/eKl9SW3AAAE./programs?date=2024-10-16&epgChannelName=channel1" \
 -H "X-Auth-Token: your-api-key"

{
 "programs": [
 {
 "programId": "prKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "epgSourceId": "eKl9SW3AAAE.",
 "epgChannelName": "channel1",
 "date": "2024-10-16",
 "start": "2024-10-16T12:00:00Z",
 "end": "2024-10-16T13:00:00Z",
 "title": "News",
 "language": "en",
 "description": "Main news of the day",
 "genre": "News",
 "rating": "0+"
 }
],
 "next": "cursor-for-next-page"
}

3.3.8 Deleting an EPG Source

- 49/101 - © Flussonic 2025

Pagination:

3.3.10 Viewing EPG Update History

Catena automatically saves the history of all EPG updates, allowing you to track download success, analyze issues, and monitor source performance.

Automatic EPG Updates

How automatic updates work:

The system automatically triggers EPG updates according to each source's period parameter

Updates are performed in the background without system downtime

Each update is recorded in history with complete result information

Upon successful update, new programs become immediately available to subscribers

Benefits of automatic updates:

No manual intervention required to keep EPG current

Program guide always stays up-to-date for subscribers

Ability to track all update attempts and identify issues

Viewing History via Web Interface

The EPG source page displays:

Recent update history — table with all download attempts

Date and time of each update

Status — success/error/timeout

Statistics — number of found, imported, and deleted programs

Duration — download and import time

Error messages (if any)

Getting History via API

Get history of all EPG updates:

Filter by specific source:

Pagination:

Response:

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/epg-sources/eKl9SW3AAAE./programs?cursor=cursor-for-next-page" \
 -H "X-Auth-Token: your-api-key"

•

•

•

•

•

•

•

•

•

•

•

•

•

curl -X GET https://your-catena-domain.com/tv-management/api/v1/epg-fetches \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/epg-fetches?epgSourceId=eKl9SW3AAAE." \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/epg-fetches?cursor=cursor-for-next-page" \
 -H "X-Auth-Token: your-api-key"

{
 "epgFetches": [
 {
 "epgFetchId": "fKl9SW3AAAE.",
 "epgSourceId": "eKl9SW3AAAE.",
 "created_at": "2024-10-16T10:25:00Z",

3.3.10 Viewing EPG Update History

- 50/101 - © Flussonic 2025

Update History Fields

Main history record fields:

epgFetchId — unique identifier of update attempt

epgSourceId — EPG source identifier

created_at — time when update task was created (ISO 8601)

fetched_at — time when download actually completed (ISO 8601)

job_id — background job identifier

status — update status:

success — successfully downloaded and imported

error — an error occurred

timeout — timeout exceeded

message — text description of result

channels — number of updated channels

foundPrograms — total programs found in XML file

importedPrograms — programs successfully imported to database

deletedPrograms — outdated programs deleted

fetchDuration — XML file download time (seconds)

importDuration — data processing and import time (seconds)

Analyzing Update History

Using history for monitoring:

Tracking stability — verify that updates occur regularly

Identifying issues — find records with error or timeout status

Performance analysis — track download and import times

Data quality control — compare program counts between updates

Usage examples:

 "fetched_at": "2024-10-16T10:30:00Z",
 "job_id": "job123",
 "status": "success",
 "message": "EPG source fetched successfully",
 "channels": 25,
 "foundPrograms": 5000,
 "importedPrograms": 4950,
 "deletedPrograms": 2100,
 "fetchDuration": 5,
 "importDuration": 12
 },
 {
 "epgFetchId": "fKl9SW3AAAA.",
 "epgSourceId": "eKl9SW3AAAE.",
 "created_at": "2024-10-09T10:25:00Z",
 "fetched_at": "2024-10-09T10:29:00Z",
 "job_id": "job122",
 "status": "success",
 "message": "EPG source fetched successfully",
 "channels": 25,
 "foundPrograms": 4800,
 "importedPrograms": 4750,
 "deletedPrograms": 1950,
 "fetchDuration": 4,
 "importDuration": 10
 }
],
 "next": "cursor-for-next-page"
}

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

Check recent updates with errors
curl -X GET "https://your-catena-domain.com/tv-management/api/v1/epg-fetches" \

3.3.10 Viewing EPG Update History

- 51/101 - © Flussonic 2025

3.3.11 Linking Channels to EPG Source

An EPG source by itself does not provide program guide to channels. You need to explicitly specify in each channel's settings:

EPG Source Name — name of EPG source

EPG Channel Name — channel name in XML EPG

For more details see Channel EPG Integration section.

Example channel configuration:

After this, the program guide from main-epg source for channel sport-channel-1 will be available for channel sport1 .

3.3.12 EPG XML Format

XMLTV Structure

Catena supports the standard XMLTV format. Basic structure:

Supported Fields

Required program fields:

start — start time (format: YYYYMMDDHHmmss)

stop — end time

channel — channel identifier (used for matching)

title — program name

Optional fields:

desc — program description

category — genre (News, Sports, Movie, etc.)

rating — age rating (0+, 6+, 12+, 16+, 18+)

lang — program language

 -H "X-Auth-Token: your-api-key" | jq '.epgFetches[] | select(.status != "success")'

Get average import time for a source
curl -X GET "https://your-catena-domain.com/tv-management/api/v1/epg-fetches?epgSourceId=eKl9SW3AAAE." \
 -H "X-Auth-Token: your-api-key" | jq '[.epgFetches[].importDuration] | add / length'

•

•

curl -X PUT https://your-catena-domain.com/tv-management/api/v1/channels/cKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "sport1",
 "title": "Sport HD",
 "epgSourceName": "main-epg",
 "epgChannelName": "sport-channel-1"
 }'

<?xml version="1.0" encoding="UTF-8"?>
<tv>
 <!-- Channel descriptions -->
 <channel id="channel1">
 <display-name>First Channel</display-name>
 </channel>

 <!-- Programs -->
 <programme start="20241016120000" stop="20241016130000" channel="channel1">
 <title lang="en">News</title>
 <desc lang="en">Main news of the day</desc>
 <category lang="en">News</category>
 <rating system="age">
 <value>0+</value>
 </rating>
 </programme>
</tv>

•

•

•

•

•

•

•

•

3.3.11 Linking Channels to EPG Source

- 52/101 - © Flussonic 2025

3.3.13 Typical Use Cases

Connecting Standard XMLTV Provider

Task: Connect EPG from third-party provider

Steps:

Get XMLTV URL from provider (e.g., https://provider.com/epg.xml)

Create EPG source in Catena with this URL

Set update period to 1 day

Start initial download

Check download result in last_fetch_result

Link channels to source, specifying correct epgChannelName

Verify program guide display in client applications

Using Multiple EPG Sources

Task: Different channel groups get EPG from different sources

Example:

epg-russia — Russian channels

epg-europe — European channels

epg-sports — sports channels from specialized provider

Advantages:

Independent update of different channel groups

Ability to use specialized providers for specific topics

Problem isolation — error in one source doesn't affect others

Monitoring EPG Updates

Task: Track EPG download success

Solution via API:

Setting up alerts:

Create EPG update history check script

Run on schedule (e.g., every hour)

Send notifications on errors or missing updates

Use /epg-fetches endpoint to get complete history

1.

2.

3.

4.

5.

6.

7.

•

•

•

•

•

•

Get update history for all sources
curl -X GET https://your-catena-domain.com/tv-management/api/v1/epg-fetches \
 -H "X-Auth-Token: your-api-key"

Or get history for a specific source
curl -X GET "https://your-catena-domain.com/tv-management/api/v1/epg-fetches?epgSourceId=eKl9SW3AAAE." \
 -H "X-Auth-Token: your-api-key"

Check status for each record
If status != "success" — there's a problem
If last update is old — EPG is outdated

•

•

•

•

3.3.13 Typical Use Cases

- 53/101 - © Flussonic 2025

3.3.14 Best Practices

Choosing EPG Provider

Selection criteria:

Data completeness — presence of descriptions, genres, ratings

Timeliness — how often EPG is updated

Coverage — support for your needed channels

Reliability — service uptime, response speed

Format — compliance with XMLTV standard

Cost — free vs paid sources

Configuring Update Period

Recommendations:

1 day — for sources with daily updates

7 days — for sources with program guide week ahead

Less than a day — not recommended, creates unnecessary load

Consider:

How often provider updates EPG

XML file size (large files — update less often)

Load on your server

Error Handling

Monitoring:

Regularly check last_fetch_result.status

Set up alerts when status = "error" or "timeout"

Track fetched_at — warn if EPG hasn't updated for >2 days

On errors:

Check URL availability (open in browser)

Check XML format — structure validity

Check file size — possibly too large

Check server network settings (firewall, proxy)

Performance Optimization

Recommendations:

Don't download EPG more often than necessary

Use CDN for EPG XML distribution if it's your file

Ensure XML file is compressed (gzip)

Split large EPG into multiple sources by topics

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

•

•

•

•

3.3.14 Best Practices

- 54/101 - © Flussonic 2025

3.3.15 Troubleshooting

EPG Not Loading

Possible causes:

URL unavailable or returns error

XML file has incorrect format

Network issues on Catena server side

Timeout — file too large

Solution:

Check last_fetch_result.message for error details

Open URL in browser — verify availability

Validate XML through online validator

Check file size — try to reduce

Check Catena server logs

Programs Not Displayed in Application

Possible causes:

Channel not linked to EPG source

Incorrect epgChannelName in channel settings

EPG not updated or download had error

Programs in EPG are outdated (past dates)

Solution:

Check channel settings — epgSourceName and epgChannelName

Compare epgChannelName with channel identifier in XML

Check last_fetch_result — was download successful

Check program presence via API /epg-sources/{id}/programs

Ensure EPG has programs for current/future date

Incomplete Program Data

Cause: EPG XML doesn't contain all fields (descriptions, genres, ratings)

Solution:

Contact EPG provider to improve data

Use another provider with more complete data

Accept as is — basic information (name, time) will still be available

Timezone Mismatch

Problem: Program times display incorrectly

Solution:

Ensure EPG XML time is in UTC or with timezone specified

Check timezone settings on Catena server

Client applications should convert UTC to user's local time

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

1.

2.

3.

3.3.15 Troubleshooting

- 55/101 - © Flussonic 2025

Duplicate Programs

Cause: EPG updates but old programs not deleted

Solution:

This is normal behavior during updates

The deletedPrograms field in last_fetch_result shows how many deleted

If duplicates remain, may be issue with program identification in EPG XML

3.3.16 See Also

Channel Management — linking channels to EPG sources

Channel EPG Integration — configuring connection

API Reference — complete EPG sources API documentation

•

•

•

•

•

•

3.3.16 See Also

- 56/101 - © Flussonic 2025

4. Subscriber Management

4.1 Subscriber Management

Subscribers are the end users of your IPTV service who get access to watch TV channels. The Catena system provides flexible subscriber

management, their channel package subscriptions, and access control.

4.1.1 What is a Subscriber

A subscriber in Catena is a user account that has access to watch channels through connected packages.

Key capabilities:

SMS authentication — primary login method for subscribers via code sent to phone

Subscription management — connecting and disconnecting channel packages

Access control — automatic channel access management based on subscriptions

Playback tokens — unique tokens for authorization during viewing

Activity monitoring — tracking viewing sessions and subscriber activity

Typical workflow:

Create subscriber account with phone number

Connect channel packages to subscriber

Subscriber receives SMS with login code for the app

After login, subscriber gets access to all channels from their packages

System automatically manages access rights based on active subscriptions

4.1.2 Main Subscriber Parameters

Technical Parameters

Subscriber ID

Automatically generated when creating a subscriber

Format: base64-encoded Snowflake ID with +/= replaced by -_.

Example: aKl9SW3AAAE.

Used for programmatic access via API

Not editable after creation

Portal ID

Identifier of the portal the subscriber belongs to

Automatically set upon creation

Subscriber can only access channels and packages from their portal

•

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

4. Subscriber Management

- 57/101 - © Flussonic 2025

Personal Information

Subscriber Name

Display name or user identifier

Can be full name, nickname, or identifier from external system

Used for display in management interface

Examples: "John Doe", "user123", "Apartment 42"

Phone Number (Phone)

Subscriber's phone number without country code

Used for SMS authentication — the primary login method

Digits only, no spaces or special characters

Validation pattern: ^[0-9]*$

Examples: 2345678901 , 9161234567

Country Code (Phone Country Code)

Phone country code without plus sign

Used together with phone field to form complete number

Digits only

Validation pattern: ^[0-9]*$

Examples: 1 (USA), 44 (UK), 7 (Russia)

Complete phone number is formed as: +{phoneCountryCode}{phone}

Example: phoneCountryCode: "1" + phone: "2345678901" = +12345678901

Access Parameters

Playback Token

Unique token for authorization during video playback

Generated automatically by the system

Used by streaming server to verify access rights

Transmitted to app after successful authentication

Can be regenerated if needed

Package List (Packages)

Array of channel package identifiers the subscriber is connected to

Read-only field — displays current active subscriptions

Updated automatically when packages are connected/disconnected

Determines which channels the subscriber has access to

Example: ["pKl9SW3AAAE.", "bKl9SW3AAAE."]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.1.2 Main Subscriber Parameters

- 58/101 - © Flussonic 2025

4.1.3 Subscriber Authentication

SMS Login (Primary Method)

Catena uses SMS authentication as the primary login method for subscribers. This provides:

Ease of use — no need to remember passwords

Security — one-time codes tied to phone

Convenience — quick registration and login

Fraud protection — phone as authentication factor

SMS login process:

Subscriber enters phone number in the app

System sends SMS with one-time code to the specified number

Subscriber enters code from SMS in the app

System verifies code and issues access token

Subscriber gets access to watch channels from their packages

Important: Phone number is the unique identifier of the subscriber in the system. Ensure numbers are entered correctly when creating accounts.

Automatic Subscriber Creation

The system can automatically create subscriber accounts on first login attempt via SMS if this feature is enabled in portal settings. This allows for

self-service user registration.

4.1.4 Creating a Subscriber

Via Web Interface

Open the "Subscribers" section in the Catena control panel

Click the "Create Subscriber" button

Fill in required fields:

Name — subscriber name or identifier

Phone Country Code — country code (e.g., 1 for USA)

Phone — phone number without country code

Save the subscriber

Connect packages via subscription management section

After creation, the subscriber will receive a unique ID and can login to the system via SMS.

Via Management API

Response:

•

•

•

•

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

7.

8.

curl -X POST https://your-catena-domain.com/tv-management/api/v1/subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "John Doe",
 "phoneCountryCode": "1",
 "phone": "2345678901"
 }'

{
 "subscriberId": "sKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "name": "John Doe",
 "phoneCountryCode": "1",
 "phone": "2345678901",

4.1.3 Subscriber Authentication

- 59/101 - © Flussonic 2025

4.1.5 Viewing Subscriber List

Via Web Interface

The "Subscribers" section displays a table with all portal subscribers:

Name — subscriber name or identifier

Phone — complete phone number

Packages — number of connected packages

Last Activity — time of last login or viewing

Status — active/blocked

Actions — edit, package management, and delete buttons

Via Management API

Get list of all subscribers:

Response:

Pagination:

4.1.6 Getting Subscriber Information

Via Management API

Response: Similar to subscriber object from the list.

 "playback_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
 "packages": []
}

•

•

•

•

•

•

curl -X GET https://your-catena-domain.com/tv-management/api/v1/subscribers \
 -H "X-Auth-Token: your-api-key"

{
 "subscribers": [
 {
 "subscriberId": "sKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "name": "John Doe",
 "phoneCountryCode": "1",
 "phone": "2345678901",
 "playback_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
 "packages": ["pKl9SW3AAAE.", "bKl9SW3AAAE."]
 },
 {
 "subscriberId": "tKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "name": "Jane Smith",
 "phoneCountryCode": "1",
 "phone": "2345678902",
 "playback_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
 "packages": ["pKl9SW3AAAE."]
 }
],
 "next": "cursor-for-next-page"
}

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/subscribers?cursor=cursor-for-next-page" \
 -H "X-Auth-Token: your-api-key"

curl -X GET https://your-catena-domain.com/tv-management/api/v1/subscribers/sKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

4.1.5 Viewing Subscriber List

- 60/101 - © Flussonic 2025

4.1.7 Editing a Subscriber

Via Web Interface

Open the subscriber list

Find the needed subscriber and click the "Edit" button

Change parameters:

Name — subscriber name

Phone Country Code — country code

Phone — phone number

Save changes

Note: When changing phone number, subscriber will need to re-authenticate via SMS with the new number.

Via Management API

4.1.8 Managing Package Subscriptions

Connecting Package to Subscriber

Via Web Interface:

Open subscriber card

Go to "Packages" section

Click "Add Package"

Select package from available list

Confirm addition

The subscriber immediately gets access to all channels from the added package.

Via Management API:

Response:

1.

2.

3.

4.

5.

6.

7.

curl -X PUT https://your-catena-domain.com/tv-management/api/v1/subscribers/sKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "John Michael Doe",
 "phoneCountryCode": "1",
 "phone": "2345678901"
 }'

1.

2.

3.

4.

5.

curl -X POST https://your-catena-domain.com/tv-management/api/v1/packages-subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE."
 }'

{
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE."
}

4.1.7 Editing a Subscriber

- 61/101 - © Flussonic 2025

Disconnecting Package from Subscriber

Via Web Interface:

Open subscriber card

Go to "Packages" section

Find package in active list

Click "Remove"

Confirm disconnection

The subscriber immediately loses access to all channels from the disconnected package.

Via Management API:

Bulk Subscription Management

For bulk connecting or disconnecting packages use loops or scripts. Example of adding a package to multiple subscribers:

4.1.9 Deleting a Subscriber

Via Web Interface

Open the subscriber list

Find the subscriber to delete

Click "Delete" button

Confirm deletion

Warning: When deleting a subscriber:

Account will be completely deleted

All package subscriptions will be cancelled

Viewing history will be preserved for analytics

Subscriber will lose access to watch channels

Account recovery will be impossible

Via Management API

1.

2.

3.

4.

5.

curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/packages-subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE."
 }'

#!/bin/bash
SUBSCRIBERS=("sKl9SW3AAAE." "tKl9SW3AAAE." "uKl9SW3AAAE.")
PACKAGE_ID="pKl9SW3AAAE."

for SUBSCRIBER_ID in "${SUBSCRIBERS[@]}"; do
 curl -X POST https://your-catena-domain.com/tv-management/api/v1/packages-subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d "{
 \"subscriberId\": \"$SUBSCRIBER_ID\",
 \"packageId\": \"$PACKAGE_ID\"
 }"
done

1.

2.

3.

4.

•

•

•

•

•

curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/subscribers/sKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

4.1.9 Deleting a Subscriber

- 62/101 - © Flussonic 2025

4.1.10 Monitoring Subscriber Activity

Viewing Playback Sessions

Catena automatically registers all channel viewing sessions by subscribers. This allows tracking activity, channel popularity, and identifying issues.

Get sessions for specific subscriber:

Get only active sessions:

Filter by time:

Response:

Operations Log

All changes in subscriber accounts (creation, deletion, subscription changes) are recorded in the operations log.

Get operations for a subscriber:

Filter by operation type:

Response:

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?subscriberId=sKl9SW3AAAE." \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?subscriberId=sKl9SW3AAAE.&active=true" \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?subscriberId=sKl9SW3AAAE.&opened_at_gte=1714233600&opened_at_lt=1714320000" \
 -H "X-Auth-Token: your-api-key"

{
 "sessions": [
 {
 "sessionId": "sessKl9SW3AAAE.",
 "subscriberId": "sKl9SW3AAAE.",
 "channelId": "chKl9SW3AAAE.",
 "channelName": "sport1",
 "portalId": "pKl9SW3AAAE.",
 "openedAt": 1714233600,
 "closedAt": 1714237200,
 "active": false,
 "bytes": 5242880000,
 "ip": "192.168.1.100",
 "userAgent": "VLC/3.0.16"
 }
],
 "next": "cursor-for-next-page"
}

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/operations?subscriberId=sKl9SW3AAAE." \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/operations?subscriberId=sKl9SW3AAAE.&type=createPackageSubscriber" \
 -H "X-Auth-Token: your-api-key"

{
 "operations": [
 {
 "operationId": "opKl9SW3AAAE.",
 "type": "createSubscriber",
 "subscriberId": "sKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "createdAt": "2024-10-16T10:00:00Z",
 "payload": {
 "name": "John Doe",
 "phone": "+12345678901"
 }
 },
 {
 "operationId": "opKl9SW3AAAB.",
 "type": "createPackageSubscriber",
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",

4.1.10 Monitoring Subscriber Activity

- 63/101 - © Flussonic 2025

4.1.11 Typical Use Cases

Creating New Subscriber with Basic Package

Task: Register a new subscriber and connect basic package

Steps:

Create subscriber account via API

Get subscriberId from response

Connect basic package via packages-subscribers API

Subscriber receives SMS to login to app

After login, subscriber sees channels from basic package

Example script:

Upgrading Subscriber to Premium Package

Task: Move subscriber from basic to premium package

Option 1: Add premium to basic

Option 2: Replace basic with premium

 "createdAt": "2024-10-16T10:05:00Z",
 "payload": {
 "packageId": "pKl9SW3AAAE."
 }
 }
],
 "next": "cursor-for-next-page"
}

1.

2.

3.

4.

5.

#!/bin/bash

1. Create subscriber
RESPONSE=$(curl -s -X POST https://your-catena-domain.com/tv-management/api/v1/subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "New Subscriber",
 "phoneCountryCode": "1",
 "phone": "2345678901"
 }')

2. Extract subscriber ID
SUBSCRIBER_ID=$(echo $RESPONSE | jq -r '.subscriberId')

3. Connect basic package
curl -X POST https://your-catena-domain.com/tv-management/api/v1/packages-subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d "{
 \"subscriberId\": \"$SUBSCRIBER_ID\",
 \"packageId\": \"basic-package-id\"
 }"

echo "Subscriber created with ID: $SUBSCRIBER_ID"

Subscriber will get access to channels from both packages
curl -X POST https://your-catena-domain.com/tv-management/api/v1/packages-subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "premium-package-id"
 }'

First disconnect basic
curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/packages-subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "basic-package-id"
 }'

4.1.11 Typical Use Cases

- 64/101 - © Flussonic 2025

Integration with Billing System

Task: Automatically manage subscriptions based on payments

Concept:

Billing system tracks subscriber payments

On successful payment, billing calls Catena API to connect package

On subscription expiry, billing disconnects package via API

Catena automatically manages channel access

Example webhook from billing:

Bulk Subscriber Migration

Task: Migrate subscribers from old system to Catena

Steps:

Export subscriber data from old system (CSV/JSON)

Create bulk import script via API

Create accounts in Catena

Connect corresponding packages

Notify subscribers about transition to new system

Example import script:

Then connect premium
curl -X POST https://your-catena-domain.com/tv-management/api/v1/packages-subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "premium-package-id"
 }'

1.

2.

3.

4.

import requests

def on_payment_success(subscriber_phone, package_name):
 # 1. Find subscriber by phone
 subscribers = requests.get(
 f"https://catena.example.com/tv-management/api/v1/subscribers",
 headers={"X-Auth-Token": "your-api-key"}
).json()

 subscriber = next(
 s for s in subscribers['subscribers']
 if f"+{s['phoneCountryCode']}{s['phone']}" == subscriber_phone
)

 # 2. Connect paid package
 requests.post(
 "https://catena.example.com/tv-management/api/v1/packages-subscribers",
 headers={"X-Auth-Token": "your-api-key"},
 json={
 "subscriberId": subscriber['subscriberId'],
 "packageId": get_package_id(package_name)
 }
)

def on_subscription_expired(subscriber_phone, package_name):
 # Similar, but via DELETE
 pass

1.

2.

3.

4.

5.

import csv
import requests

API_URL = "https://catena.example.com/tv-management/api/v1"
API_KEY = "your-api-key"

def import_subscribers(csv_file):
 with open(csv_file, 'r') as f:
 reader = csv.DictReader(f)

4.1.11 Typical Use Cases

- 65/101 - © Flussonic 2025

4.1.12 Best Practices

Managing Phone Numbers

Recommendations:

Input validation — verify number format before sending to API

Uniqueness — one phone number = one subscriber

International format — store country code and number separately

Number change — require confirmation via SMS to new number

Deactivation — promptly update data when operator disconnects number

Security

Protecting playback tokens:

Don't transmit playback_token to third parties

Use HTTPS for all API requests

Regularly update tokens if compromise suspected

Log access attempts with invalid tokens

Access control:

Limit number of simultaneous sessions per subscriber

Track suspicious activity (different IPs, different devices)

Block subscribers upon fraud detection

Subscription Management

Recommendations:

Smooth transition — notify about subscription changes in advance

Automation — integrate with billing for automatic management

Free packages — use portal free packages for demo content

Trial periods — temporarily connect premium packages for trial

Change history — use operations log for audit

 for row in reader:
 # Create subscriber
 response = requests.post(
 f"{API_URL}/subscribers",
 headers={"X-Auth-Token": API_KEY},
 json={
 "name": row['name'],
 "phoneCountryCode": row['country_code'],
 "phone": row['phone']
 }
)

 subscriber_id = response.json()['subscriberId']

 # Connect packages
 for package_id in row['packages'].split(','):
 requests.post(
 f"{API_URL}/packages-subscribers",
 headers={"X-Auth-Token": API_KEY},
 json={
 "subscriberId": subscriber_id,
 "packageId": package_id.strip()
 }
)

 print(f"Imported: {row['name']} ({subscriber_id})")

import_subscribers('subscribers.csv')

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.1.12 Best Practices

- 66/101 - © Flussonic 2025

Subscriber Communication

When to send notifications:

Upon account creation

Upon subscription changes

Upon paid period expiry

Upon phone number change

Upon access blocking

Communication channels:

SMS — for login codes and critical notifications

Email — for informational newsletters (if available in your system)

Push notifications — via mobile app

In-app messages — upon app login

4.1.13 Troubleshooting

Subscriber Cannot Login via SMS

Possible causes:

Phone number incorrectly specified during registration

SMS not delivered (carrier issues)

Code from SMS expired

Phone number blocked in SMS gateway

Solution:

Check phone number in subscriber account

Ensure number format is correct (+country_code + number)

Check SMS gateway logs for message delivery

Try sending SMS again

If SMS doesn't arrive — check SMS gateway balance and settings

Subscriber Doesn't See Channels

Possible causes:

Subscriber has no connected packages

Packages contain no channels

Playback token expired or invalid

Technical issues with streaming server

Solution:

Check package list in subscriber's packages field

Ensure packages contain channels

Verify channels are active and working

Regenerate playback_token if needed

Check streaming server logs

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

1.

2.

3.

4.

5.

4.1.13 Troubleshooting

- 67/101 - © Flussonic 2025

Errors When Connecting Package

Possible causes:

Package already connected to subscriber

Incorrect packageId or subscriberId specified

Package and subscriber belong to different portals

Package doesn't exist or deleted

Solution:

Check subscriber's current packages via GET /subscribers/{id}

Ensure package and subscriber IDs are correct

Verify package exists via GET /packages/{id}

Ensure portalId matches for package and subscriber

Duplicate Phone Numbers

Problem: Attempt to create subscriber with existing number

Solution:

API should return error when creating duplicate

Check for subscriber with such number before creation

Use UPDATE instead of CREATE for existing subscribers

Implement phone number search in your interface

4.1.14 See Also

Channel Package Management — creating and configuring packages for subscribers

Channel Management — setting up TV channels

Operations Log — tracking system changes

Play Sessions — monitoring viewing activity

•

•

•

•

1.

2.

3.

4.

•

•

•

•

•

•

•

•

4.1.14 See Also

- 68/101 - © Flussonic 2025

4.2 Subscription Management

Subscriptions are the relationships between subscribers and channel packages that determine which channels each subscriber has access to. The

subscription system is the key mechanism for monetizing IPTV services in Catena.

4.2.1 What is a Subscription

A subscription in Catena is an active link between a subscriber and a channel package. When a subscriber has a subscription to a package, they

automatically get access to all channels included in that package.

Key concept:

Subscriber subscribes to one or more packages

Each package contains a set of channels

Subscriber gets access to all channels from all their packages

System checks subscription presence when viewing

Key capabilities:

Flexible access control — connecting and disconnecting packages in real-time

Multiple subscriptions — subscriber can be subscribed to multiple packages simultaneously

Free packages — automatic access to basic content for all subscribers

Logging — complete history of all subscription changes

API-first approach — easy integration with billing systems

Typical workflow:

Billing system receives payment from user

Billing calls Catena API to create subscription

Catena immediately grants access to package channels

Subscriber starts watching channels

At period end, billing disconnects subscription

Access to paid channels is automatically blocked

4.2.2 Subscription Lifecycle

Creating a Subscription

When subscription is created:

Upon package payment through billing system

Upon manual connection by administrator

Upon promo code or bonus activation

Upon trial period provision

Subscriber → Subscription → Package → Channels → Viewing

1.

2.

3.

4.

•

•

•

•

•

1.

2.

3.

4.

5.

6.

•

•

•

•

4.2 Subscription Management

- 69/101 - © Flussonic 2025

What happens when created:

Record is created in database about subscriber-package link

Subscriber immediately gets access to all package channels

Record is added to operations log (type createPackageSubscriber)

On next player request, available channels list is updated

Active Subscription

During active subscription:

Subscriber can watch all package channels without restrictions

System logs all viewing sessions

Subscriber's packages field contains active package IDs

Streaming server verifies access rights on each stream request

Cancelling a Subscription

When subscription is cancelled:

Upon paid period expiration

Upon subscription cancellation by user

Upon subscriber blocking by administrator

Upon package deletion from system

What happens when cancelled:

Subscriber-package link record is deleted

Subscriber immediately loses access to package channels

Record is added to operations log (type deletePackageSubscriber)

Active viewing sessions of package channels are interrupted

4.2.3 Creating a Subscription

Via Web Interface

Open subscriber card in "Subscribers" section

Go to "Subscriptions" or "Packages" tab

Click "Add Subscription"

Select package from dropdown list of available packages

Confirm addition

Subscriber immediately gets access to all channels of the selected package.

Via Management API

Create subscriber subscription to package:

1.

2.

3.

4.

•

•

•

•

•

•

•

•

1.

2.

3.

4.

1.

2.

3.

4.

5.

curl -X POST https://your-catena-domain.com/tv-management/api/v1/packages-subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE."
 }'

4.2.3 Creating a Subscription

- 70/101 - © Flussonic 2025

Request parameters:

subscriberId (required) — ID of subscriber to connect package to

packageId (required) — ID of package to connect

Response:

Important points:

Subscriber and package must belong to same portal

If subscription already exists, API will return error

Changes take effect immediately

Operation is recorded in log

4.2.4 Deleting a Subscription

Via Web Interface

Open subscriber card

Go to "Subscriptions" tab

Find package in active subscriptions list

Click "Delete" or "Disconnect"

Confirm disconnection

Subscriber immediately loses access to channels of this package.

Via Management API

Delete subscriber subscription to package:

Request parameters:

subscriberId (required) — subscriber ID

packageId (required) — package ID to disconnect

Response:

HTTP 201 - subscription deleted

Important points:

If subscription doesn't exist, API will return error

Active viewing sessions will be interrupted

Changes take effect immediately

Operation is recorded in log

•

•

{
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE."
}

•

•

•

•

1.

2.

3.

4.

5.

curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/packages-subscribers \
 -H "X-Auth-Token: your-api-key" \
 -H "Content-Type: application/json" \
 -d '{
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE."
 }'

•

•

•

•

•

•

4.2.4 Deleting a Subscription

- 71/101 - © Flussonic 2025

4.2.5 Viewing Subscriptions

Specific Subscriber Subscriptions

Get subscriber's package list:

Response:

The packages field contains array of IDs of all packages the subscriber is subscribed to.

Specific Package Subscribers

Unfortunately, there's no direct API to get list of package subscribers. Use operations log or get all subscribers and filter by packages :

Subscription History via Operations Log

Get all subscription operations for specific subscriber:

Get operations for specific package:

Response:

curl -X GET https://your-catena-domain.com/tv-management/api/v1/subscribers/sKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

{
 "subscriberId": "sKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "name": "John Doe",
 "phoneCountryCode": "1",
 "phone": "2345678901",
 "playback_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
 "packages": ["pKl9SW3AAAE.", "sportKl9SW3AAAE."]
}

Get all subscribers
curl -X GET https://your-catena-domain.com/tv-management/api/v1/subscribers \
 -H "X-Auth-Token: your-api-key" \
 | jq '.subscribers[] | select(.packages[] | contains("pKl9SW3AAAE."))'

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/operations?subscriberId=sKl9SW3AAAE.&type=createPackageSubscriber&type=deletePackageSubscriber"
\
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/operations?packageId=pKl9SW3AAAE." \
 -H "X-Auth-Token: your-api-key"

{
 "operations": [
 {
 "operationId": "opKl9SW3AAAE.",
 "type": "createPackageSubscriber",
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "createdAt": "2024-10-16T10:05:00Z",
 "payload": {
 "packageId": "pKl9SW3AAAE.",
 "subscriberId": "sKl9SW3AAAE."
 }
 },
 {
 "operationId": "opKl9SW3AAAB.",
 "type": "deletePackageSubscriber",
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "pKl9SW3AAAE.",
 "portalId": "pKl9SW3AAAE.",
 "createdAt": "2024-10-20T15:30:00Z",
 "payload": {
 "packageId": "pKl9SW3AAAE.",
 "subscriberId": "sKl9SW3AAAE."
 }
 }
],
 "next": "cursor-for-next-page"
}

4.2.5 Viewing Subscriptions

- 72/101 - © Flussonic 2025

Operation types:

createPackageSubscriber — subscription creation

deletePackageSubscriber — subscription deletion

autoCreateSubscriber — automatic subscriber creation (may include basic package subscription)

4.2.6 Portal Free Packages

Catena supports the concept of "free packages" — packages that are automatically available to all portal subscribers without explicit subscription

creation.

Free Packages Concept

How it works:

Portal settings define list of free packages

All portal subscribers automatically get access to channels from these packages

No need to create individual subscriptions for each subscriber

Perfect for basic content, demo channels, promotional channels

Use cases:

Basic content — public channels available to all

Trial period — demo content for new users

Promo channels — advertising and informational channels

Public interest channels — mandatory distribution channels

Managing Free Packages

View portal free packages:

Response:

Add package to free list:

Remove package from free list:

•

•

•

•

•

•

•

•

•

•

•

curl -X GET https://your-catena-domain.com/tv-management/api/v1/portal \
 -H "X-Auth-Token: your-api-key"

{
 "portalId": "pKl9SW3AAAE.",
 "name": "my-iptv-portal",
 "domain": "iptv.example.com",
 "freePackages": ["basicKl9SW3AAAE.", "demoKl9SW3AAAE."],
 "branding": {
 "title": "My IPTV Service",
 "description": "Premium IPTV streaming"
 }
}

curl -X POST https://your-catena-domain.com/tv-management/api/v1/portal/free-packages/basicKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

curl -X DELETE https://your-catena-domain.com/tv-management/api/v1/portal/free-packages/basicKl9SW3AAAE. \
 -H "X-Auth-Token: your-api-key"

4.2.6 Portal Free Packages

- 73/101 - © Flussonic 2025

Important:

Free package changes apply to all subscribers instantly

On addition — all subscribers get access to package channels

On removal — only those without explicit subscription lose access

4.2.7 Billing System Integration

Integration Architecture

Typical scheme:

Billing responsibilities:

Receiving payments from users

Managing tariffs and subscription periods

Tracking subscription expirations

Calling Catena API to connect/disconnect packages

Catena responsibilities:

Managing channel access

Verifying rights during viewing

Logging subscriber activity

Providing viewing statistics

Integration Examples

EXAMPLE 1: WEBHOOK ON PAYMENT

Billing sends webhook to your service on successful payment:

•

•

•

[Billing System] ←→ [Catena API] ←→ [Streaming Server]
 ↓ ↓ ↓
 Payments Subscriptions Channel Access

•

•

•

•

•

•

•

•

from flask import Flask, request
import requests

app = Flask(__name__)

CATENA_API_URL = "https://catena.example.com/tv-management/api/v1"
CATENA_API_KEY = "your-api-key"

@app.route('/billing-webhook', methods=['POST'])
def billing_webhook():
 data = request.json

 if data['event'] == 'payment.success':
 # Payment received - activate subscription
 subscriber_id = get_subscriber_id(data['user_phone'])
 package_id = get_package_id(data['tariff_name'])

 # Create subscription in Catena
 response = requests.post(
 f"{CATENA_API_URL}/packages-subscribers",
 headers={"X-Auth-Token": CATENA_API_KEY},
 json={
 "subscriberId": subscriber_id,
 "packageId": package_id
 }
)

 if response.status_code == 200:
 return {"status": "ok", "message": "Subscription activated"}
 else:
 return {"status": "error", "message": response.text}, 500

 elif data['event'] == 'subscription.expired':
 # Subscription expired - deactivate
 subscriber_id = get_subscriber_id(data['user_phone'])
 package_id = get_package_id(data['tariff_name'])

4.2.7 Billing System Integration

- 74/101 - © Flussonic 2025

EXAMPLE 2: PERIODIC SYNCHRONIZATION

Regular checking and synchronization of subscriptions:

 # Delete subscription in Catena
 response = requests.delete(
 f"{CATENA_API_URL}/packages-subscribers",
 headers={"X-Auth-Token": CATENA_API_KEY},
 json={
 "subscriberId": subscriber_id,
 "packageId": package_id
 }
)

 return {"status": "ok", "message": "Subscription deactivated"}

 return {"status": "ok"}

def get_subscriber_id(phone):
 """Get Catena subscriber ID by phone number"""
 response = requests.get(
 f"{CATENA_API_URL}/subscribers",
 headers={"X-Auth-Token": CATENA_API_KEY}
)
 subscribers = response.json()['subscribers']

 for sub in subscribers:
 full_phone = f"+{sub['phoneCountryCode']}{sub['phone']}"
 if full_phone == phone:
 return sub['subscriberId']

 # If subscriber not found - create
 return create_subscriber(phone)

def get_package_id(tariff_name):
 """Map tariff name to package ID"""
 tariff_mapping = {
 "basic": "basicKl9SW3AAAE.",
 "premium": "premiumKl9SW3AAAE.",
 "sport": "sportKl9SW3AAAE."
 }
 return tariff_mapping.get(tariff_name)

if __name__ == '__main__':
 app.run(port=5000)

import requests
from datetime import datetime, timedelta

CATENA_API_URL = "https://catena.example.com/tv-management/api/v1"
CATENA_API_KEY = "your-api-key"
BILLING_DB = "postgresql://billing_db"

def sync_subscriptions():
 """Synchronize subscriptions between billing and Catena"""

 # 1. Get active subscriptions from billing
 active_billing_subscriptions = get_active_subscriptions_from_billing()

 # 2. Get all Catena subscribers
 response = requests.get(
 f"{CATENA_API_URL}/subscribers",
 headers={"X-Auth-Token": CATENA_API_KEY}
)
 catena_subscribers = response.json()['subscribers']

 # 3. Compare and synchronize
 for billing_sub in active_billing_subscriptions:
 phone = billing_sub['phone']
 package_id = get_package_id(billing_sub['tariff'])

 # Find subscriber in Catena
 catena_sub = find_subscriber_by_phone(catena_subscribers, phone)

 if catena_sub:
 # Check if needed subscription exists
 if package_id not in catena_sub['packages']:
 # No subscription - create
 create_subscription(catena_sub['subscriberId'], package_id)
 print(f"Activated: {phone} -> {package_id}")
 else:
 # No subscriber - create with subscription
 create_subscriber_with_package(phone, package_id)
 print(f"Created subscriber: {phone}")

 # 4. Disconnect expired subscriptions
 for catena_sub in catena_subscribers:
 phone = f"+{catena_sub['phoneCountryCode']}{catena_sub['phone']}"

 for package_id in catena_sub['packages']:
 if not has_active_billing_subscription(phone, package_id):

4.2.7 Billing System Integration

- 75/101 - © Flussonic 2025

EXAMPLE 3: TRIAL PERIOD

Automatic trial period for new subscribers:

4.2.8 Typical Use Cases

Auto-Renewal Subscription

Task: Implement monthly subscription with automatic renewal

 # No subscription in billing - remove from Catena
 delete_subscription(catena_sub['subscriberId'], package_id)
 print(f"Deactivated: {phone} -> {package_id}")

def create_subscription(subscriber_id, package_id):
 requests.post(
 f"{CATENA_API_URL}/packages-subscribers",
 headers={"X-Auth-Token": CATENA_API_KEY},
 json={
 "subscriberId": subscriber_id,
 "packageId": package_id
 }
)

def delete_subscription(subscriber_id, package_id):
 requests.delete(
 f"{CATENA_API_URL}/packages-subscribers",
 headers={"X-Auth-Token": CATENA_API_KEY},
 json={
 "subscriberId": subscriber_id,
 "packageId": package_id
 }
)

Run this function on schedule (e.g., every hour)
if __name__ == '__main__':
 sync_subscriptions()

import requests
from datetime import datetime, timedelta

def activate_trial_subscription(phone, trial_days=7):
 """Activate trial subscription for N days"""

 # 1. Create or get subscriber
 subscriber_id = get_or_create_subscriber(phone)

 # 2. Connect trial package
 trial_package_id = "trialKl9SW3AAAE."

 response = requests.post(
 f"{CATENA_API_URL}/packages-subscribers",
 headers={"X-Auth-Token": CATENA_API_KEY},
 json={
 "subscriberId": subscriber_id,
 "packageId": trial_package_id
 }
)

 if response.status_code == 200:
 # 3. Schedule automatic cancellation
 schedule_subscription_cancellation(
 subscriber_id,
 trial_package_id,
 datetime.now() + timedelta(days=trial_days)
)

 return {
 "success": True,
 "message": f"Trial activated for {trial_days} days",
 "expires_at": (datetime.now() + timedelta(days=trial_days)).isoformat()
 }

 return {"success": False, "error": response.text}

def schedule_subscription_cancellation(subscriber_id, package_id, cancel_date):
 """Schedule subscription cancellation"""
 # Save to task database or use scheduler
 # E.g., Celery, APScheduler, or cron job
 pass

4.2.8 Typical Use Cases

- 76/101 - © Flussonic 2025

Solution:

Billing charges payment each month

On successful charge, billing checks subscription presence in Catena

If subscription exists — do nothing (it's already active)

If no subscription — create via API

On failed charge — delete subscription via API

Family Subscription

Task: One payment — access for multiple subscribers (family account)

Solution:

Create family tariff in billing

On payment, connect package to all family subscribers

Store link between subscribers in billing

Temporary Promotion

Task: Give access to premium channels for the weekend

Solution:

Friday evening — connect promo package to all active subscribers

Monday morning — disconnect promo package

1.

2.

3.

4.

5.

def process_monthly_renewal(user_id, package_name):
 """Process monthly renewal"""

 # Charge attempt
 payment_success = billing_charge(user_id, get_package_price(package_name))

 subscriber_id = get_subscriber_id_by_user(user_id)
 package_id = get_package_id(package_name)

 if payment_success:
 # Payment successful - ensure subscription is active
 ensure_subscription_active(subscriber_id, package_id)
 else:
 # Payment failed - disconnect subscription
 deactivate_subscription(subscriber_id, package_id)
 send_notification(user_id, "payment_failed")

1.

2.

3.

def activate_family_subscription(family_id, package_name):
 """Activate family subscription"""

 package_id = get_package_id(package_name)

 # Get all family members from billing
 family_members = get_family_members(family_id)

 for member in family_members:
 subscriber_id = get_subscriber_id(member['phone'])

 # Connect package to each
 requests.post(
 f"{CATENA_API_URL}/packages-subscribers",
 headers={"X-Auth-Token": CATENA_API_KEY},
 json={
 "subscriberId": subscriber_id,
 "packageId": package_id
 }
)

 return {"activated": len(family_members)}

1.

2.

#!/bin/bash
friday-promo.sh - run via cron on Friday at 6 PM

PROMO_PACKAGE_ID="weekendKl9SW3AAAE."

Get all subscribers

4.2.8 Typical Use Cases

- 77/101 - © Flussonic 2025

Plan Downgrade

Task: Subscriber moves from premium to basic plan

Solution:

SUBSCRIBERS=$(curl -s -X GET "$CATENA_API_URL/subscribers" \
 -H "X-Auth-Token: $CATENA_API_KEY" \
 | jq -r '.subscribers[].subscriberId')

Connect promo package to each
for SUBSCRIBER_ID in $SUBSCRIBERS; do
 curl -X POST "$CATENA_API_URL/packages-subscribers" \
 -H "X-Auth-Token: $CATENA_API_KEY" \
 -H "Content-Type: application/json" \
 -d "{
 \"subscriberId\": \"$SUBSCRIBER_ID\",
 \"packageId\": \"$PROMO_PACKAGE_ID\"
 }"
done

echo "Promo activated for $(echo "$SUBSCRIBERS" | wc -l) subscribers"

#!/bin/bash
monday-cleanup.sh - run via cron on Monday at 6 AM

PROMO_PACKAGE_ID="weekendKl9SW3AAAE."

SUBSCRIBERS=$(curl -s -X GET "$CATENA_API_URL/subscribers" \
 -H "X-Auth-Token: $CATENA_API_KEY" \
 | jq -r '.subscribers[] | select(.packages[] | contains("'$PROMO_PACKAGE_ID'")) | .subscriberId')

for SUBSCRIBER_ID in $SUBSCRIBERS; do
 curl -X DELETE "$CATENA_API_URL/packages-subscribers" \
 -H "X-Auth-Token: $CATENA_API_KEY" \
 -H "Content-Type: application/json" \
 -d "{
 \"subscriberId\": \"$SUBSCRIBER_ID\",
 \"packageId\": \"$PROMO_PACKAGE_ID\"
 }"
done

echo "Promo deactivated for $(echo "$SUBSCRIBERS" | wc -l) subscribers"

def downgrade_subscription(subscriber_id, from_package, to_package):
 """Downgrade subscriber plan"""

 from_package_id = get_package_id(from_package)
 to_package_id = get_package_id(to_package)

 # 1. Disconnect premium package
 requests.delete(
 f"{CATENA_API_URL}/packages-subscribers",
 headers={"X-Auth-Token": CATENA_API_KEY},
 json={
 "subscriberId": subscriber_id,
 "packageId": from_package_id
 }
)

 # 2. Connect basic package
 requests.post(
 f"{CATENA_API_URL}/packages-subscribers",
 headers={"X-Auth-Token": CATENA_API_KEY},
 json={
 "subscriberId": subscriber_id,
 "packageId": to_package_id
 }
)

 # 3. Record in billing
 billing_record_downgrade(subscriber_id, from_package, to_package)

 return {"success": True, "new_package": to_package}

4.2.8 Typical Use Cases

- 78/101 - © Flussonic 2025

4.2.9 Best Practices

Package Design

Package structure recommendations:

Basic package — minimal channel set for all

Thematic packages — sports, movies, kids, news

Premium packages — exclusive content, HD/4K channels

Combo packages — multiple themes in one (savings for subscriber)

Avoid:

Too many small packages — complicates choice

Channel duplication between packages — billing confusion

Package overlaps without logic — one channel in 5 different packages

Error Handling

When integrating with billing:

State Synchronization

Regular data reconciliation:

•

•

•

•

•

•

•

def safe_create_subscription(subscriber_id, package_id, retry_count=3):
 """Create subscription with retries"""

 for attempt in range(retry_count):
 try:
 response = requests.post(
 f"{CATENA_API_URL}/packages-subscribers",
 headers={"X-Auth-Token": CATENA_API_KEY},
 json={
 "subscriberId": subscriber_id,
 "packageId": package_id
 },
 timeout=10
)

 if response.status_code == 200:
 return {"success": True}
 elif response.status_code == 409:
 # Subscription already exists - this is OK
 return {"success": True, "already_exists": True}
 else:
 # Other error
 error_msg = response.json().get('message', 'Unknown error')
 log_error(f"Failed to create subscription: {error_msg}")

 except requests.exceptions.Timeout:
 log_warning(f"Timeout on attempt {attempt + 1}")
 if attempt < retry_count - 1:
 time.sleep(2 ** attempt) # Exponential backoff
 continue
 except Exception as e:
 log_error(f"Unexpected error: {str(e)}")
 break

 # All attempts failed - save for manual processing
 save_failed_operation("create_subscription", subscriber_id, package_id)
 return {"success": False, "error": "Failed after retries"}

def audit_subscriptions():
 """Check subscription consistency between systems"""

 discrepancies = []

 # Get data from both systems
 billing_subscriptions = get_billing_subscriptions()
 catena_subscriptions = get_catena_subscriptions()

 # Find discrepancies
 for billing_sub in billing_subscriptions:
 if not exists_in_catena(billing_sub, catena_subscriptions):
 discrepancies.append({

4.2.9 Best Practices

- 79/101 - © Flussonic 2025

Logging and Monitoring

What to log:

All subscription creations and deletions

Errors when calling API

Catena API response time

Discrepancies between billing and Catena

Metrics to track:

 "type": "missing_in_catena",
 "subscriber": billing_sub['phone'],
 "package": billing_sub['package']
 })

 for catena_sub in catena_subscriptions:
 if not exists_in_billing(catena_sub, billing_subscriptions):
 discrepancies.append({
 "type": "missing_in_billing",
 "subscriber": catena_sub['phone'],
 "package": catena_sub['package']
 })

 if discrepancies:
 # Send notification to administrator
 send_audit_report(discrepancies)

 # Optionally: auto-fix
 auto_fix_discrepancies(discrepancies)

 return discrepancies

•

•

•

•

import prometheus_client as prom

Prometheus metrics
subscription_creations = prom.Counter(
 'catena_subscription_creations_total',
 'Total number of subscription creations',
 ['package_name', 'status']
)

subscription_deletions = prom.Counter(
 'catena_subscription_deletions_total',
 'Total number of subscription deletions',
 ['package_name', 'status']
)

api_latency = prom.Histogram(
 'catena_api_latency_seconds',
 'Latency of Catena API calls',
 ['endpoint', 'method']
)

def monitored_create_subscription(subscriber_id, package_id):
 """Create subscription with monitoring"""

 package_name = get_package_name(package_id)

 with api_latency.labels('/packages-subscribers', 'POST').time():
 try:
 response = requests.post(...)

 if response.status_code == 200:
 subscription_creations.labels(package_name, 'success').inc()
 return {"success": True}
 else:
 subscription_creations.labels(package_name, 'error').inc()
 return {"success": False}

 except Exception as e:
 subscription_creations.labels(package_name, 'exception').inc()
 raise

4.2.9 Best Practices

- 80/101 - © Flussonic 2025

Subscriber Notifications

When to send notifications:

On subscription activation — "Welcome! Now available channels: ..."

3 days before expiration — "Your subscription expires in 3 days"

On renewal — "Subscription renewed until ..."

On cancellation — "Subscription cancelled. To renew..."

On payment error — "Failed to charge. Please check..."

4.2.10 Troubleshooting

Subscription Not Creating

Possible causes:

Invalid subscriberId or packageId

Subscriber and package from different portals

Subscription already exists

API authorization issues

Solution:

Check subscriber existence: GET /subscribers/{id}

Check package existence: GET /packages/{id}

Ensure portalId matches

Check subscriber's current subscriptions

Verify API key validity

Subscriber Doesn't See Channels After Subscription Creation

Possible causes:

Package contains no channels

App didn't update channel list

Streaming server issues

1.

2.

3.

4.

5.

def notify_subscription_activated(subscriber_id, package_name):
 """Notification about subscription activation"""

 subscriber = get_subscriber(subscriber_id)
 phone = f"+{subscriber['phoneCountryCode']}{subscriber['phone']}"

 # Get package channel list
 package = get_package(get_package_id(package_name))
 channels = ", ".join(package['channels'][:5]) # First 5 channels

 message = f"""
 Subscription activated!

 Package: {package_name}
 Available channels: {channels} and more

 Enjoy watching!
 """

 send_sms(phone, message)

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

4.2.10 Troubleshooting

- 81/101 - © Flussonic 2025

Solution:

Check package contents: GET /packages/{id}

Ensure package has channels

Ask subscriber to restart app

Check subscriber's playback_token

Check streaming server logs

Subscription Not Deleting

Possible causes:

Subscription doesn't exist (already deleted)

Invalid request parameters

It's a portal free package (can't delete)

Solution:

Check subscriber's current subscriptions

Ensure it's not a portal free package

Verify subscriberId and packageId correctness

Check operations log for this subscriber

Discrepancies Between Billing and Catena

Problem: Subscription active in billing but not in Catena (or vice versa)

Solution:

Implement regular synchronization (every 15-60 minutes)

Use operations log to identify issues

On discrepancy, billing has priority (source of truth)

Log all changes for analysis

4.2.11 See Also

Subscriber Management — creating and configuring subscriber accounts

Channel Package Management — creating and configuring packages

Channel Management — adding channels to packages

1.

2.

3.

4.

5.

•

•

•

1.

2.

3.

4.

1.

2.

3.

4.

def fix_sync_issue(subscriber_id):
 """Fix desynchronization for subscriber"""

 # 1. Get "truth" from billing
 billing_packages = get_billing_packages(subscriber_id)

 # 2. Get current state in Catena
 subscriber = get_catena_subscriber(subscriber_id)
 catena_packages = subscriber['packages']

 # 3. Synchronize
 for package_id in billing_packages:
 if package_id not in catena_packages:
 # Should be but isn't - add
 create_subscription(subscriber_id, package_id)
 log_info(f"Fixed: added {package_id} to {subscriber_id}")

 for package_id in catena_packages:
 if package_id not in billing_packages:
 # Exists but shouldn't - remove
 delete_subscription(subscriber_id, package_id)
 log_info(f"Fixed: removed {package_id} from {subscriber_id}")

•

•

•

4.2.11 See Also

- 82/101 - © Flussonic 2025

Operations Log — tracking all subscription changes

Portal Configuration — configuring free packages

•

•

4.2.11 See Also

- 83/101 - © Flussonic 2025

5. Monitoring

5.1 Play Session Monitoring

Play sessions are records of subscribers watching channels. Catena automatically registers each stream opening and saves detailed session

information for monitoring, analytics, and debugging.

5.1.1 What is a Play Session

A play session is a period of time when a subscriber watches a specific channel. Each session contains information about who, what, when, and from

where they watched.

Session lifecycle:

What is recorded:

Who is watching: subscriberId, token

What is being watched: channelId, channelName, programId

When: openedAt, closedAt, updatedAt (timestamps)

From where: IP address, userAgent (player/device)

How much: bytes (data transferred), session duration

Status: active (session open or closed)

Applications:

Real-time monitoring — who is watching channels now

Problem debugging — why subscriber can't watch channel

Viewing analytics — popular channels, viewing time

Billing — traffic consumption calculation

Security — anomaly detection (one token from different IPs)

Statistics — reports for content owners

Stream opening → Active viewing → Stream closing
 (openedAt) (active: true) (closedAt)

•

•

•

•

•

•

•

•

•

•

•

•

5. Monitoring

- 84/101 - © Flussonic 2025

5.1.2 Play Session Structure

Main Fields

Identifiers:

sessionId — unique session ID

Format: base64-encoded Snowflake ID

Example: sessKl9SW3AAAE.

Generated when opening stream

subscriberId — ID of subscriber watching channel

Link to user account

Example: sKl9SW3AAAE.

channelId — ID of channel being watched

Example: chKl9SW3AAAE.

channelName — technical channel name

More convenient for debugging than ID

Example: sport1 , news-hd

programId — program ID (if watching from archive)

Null for live viewing

Example: prKl9SW3AAAE.

portalId — portal ID

Data isolation between portals

Example: pKl9SW3AAAE.

Timestamps:

openedAt — Unix timestamp of session opening

When subscriber started watching

Example: 1714233600 (April 28, 2024, 10:00:00 UTC)

closedAt — Unix timestamp of session closing

When stream was stopped

Null for active sessions

Example: 1714237200

updatedAt — Unix timestamp of last update

Updated periodically during viewing

Used to determine "dead" connections

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.1.2 Play Session Structure

- 85/101 - © Flussonic 2025

Network information:

ip — subscriber's IP address

Example: 192.168.1.100 , 2001:db8::1

Used for geolocation and anomaly detection

userAgent — player User-Agent string

Identifies device and application

Examples:

VLC/3.0.16

Mozilla/5.0 (Linux; Android 11) AppleWebKit/537.36

Catena/1.0 (Android 11; Samsung SM-G991B)

Statistics:

active — session activity flag

true — session open, viewing in progress

false — session closed, viewing finished

bytes — data transferred in bytes

Updated during viewing

Example: 5242880000 (5 GB)

Used for traffic billing

token — subscriber's playback token

Used by streaming server for authorization

Example: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...

Device:

deviceId — device identifier

If app sends device ID

Example: device_android_samsung_s21

Helps track number of devices per subscriber

5.1.3 Getting Session List

Basic Request

Get list of all sessions:

Response:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

curl -X GET https://your-catena-domain.com/tv-management/api/v1/play-sessions \
 -H "X-Auth-Token: your-api-key"

{
 "sessions": [
 {
 "sessionId": "sessKl9SW3AAAE.",
 "subscriberId": "sKl9SW3AAAE.",
 "channelId": "chKl9SW3AAAE.",
 "channelName": "sport1",
 "programId": null,
 "portalId": "pKl9SW3AAAE.",
 "openedAt": 1714233600,
 "closedAt": null,
 "updatedAt": 1714237200,
 "active": true,
 "bytes": 1073741824,
 "ip": "192.168.1.100",
 "userAgent": "Catena/1.0 (Android 11)",

5.1.3 Getting Session List

- 86/101 - © Flussonic 2025

Pagination

For large data volumes, cursor-based pagination is used:

Recommendations:

Process data page by page

Use filters to reduce volume

For periodic monitoring, query only active sessions

5.1.4 Session Filtering

By Subscriber

Get all sessions for specific subscriber:

Applications:

View specific user history

Debug subscriber issues

Analyze viewing patterns

Multiple subscribers:

By Channel

Get all sessions for specific channel:

 "token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
 "deviceId": "device_123"
 },
 {
 "sessionId": "sessKl9SW3AAAB.",
 "subscriberId": "sKl9SW3AAAB.",
 "channelId": "chKl9SW3AAAB.",
 "channelName": "news-hd",
 "programId": null,
 "portalId": "pKl9SW3AAAE.",
 "openedAt": 1714230000,
 "closedAt": 1714233600,
 "updatedAt": 1714233600,
 "active": false,
 "bytes": 524288000,
 "ip": "10.0.0.50",
 "userAgent": "VLC/3.0.16",
 "token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
 "deviceId": null
 }
],
 "next": "cursor-for-next-page"
}

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?cursor=cursor-for-next-page" \
 -H "X-Auth-Token: your-api-key"

•

•

•

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?subscriberId=sKl9SW3AAAE." \
 -H "X-Auth-Token: your-api-key"

•

•

•

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?subscriberId=sKl9SW3AAAE.&subscriberId=sKl9SW3AAAB." \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?channelId=chKl9SW3AAAE." \
 -H "X-Auth-Token: your-api-key"

5.1.4 Session Filtering

- 87/101 - © Flussonic 2025

Applications:

Determine channel popularity

Analyze channel load peaks

Debug specific channel issues

Multiple channels:

By Activity Status

Only active sessions (who is watching now):

Only completed sessions (history):

Applications:

active=true — real-time monitoring

active=false — history analysis, report building

By Time

Sessions opened after specific time:

Sessions opened before specific time:

Sessions in time interval:

Applications:

Analyze views for specific period

Build time-based graphs

Identify peak hours

Converting dates to Unix timestamp:

•

•

•

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?channelId=chKl9SW3AAAE.&channelId=chKl9SW3AAAB." \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?active=true" \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?active=false" \
 -H "X-Auth-Token: your-api-key"

•

•

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?opened_at_gte=1714233600" \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?opened_at_lt=1714320000" \
 -H "X-Auth-Token: your-api-key"

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?opened_at_gte=1714233600&opened_at_lt=1714320000" \
 -H "X-Auth-Token: your-api-key"

•

•

•

Current date/time
date +%s
Result: 1714233600

Specific date (GNU date)
date -d "2024-04-28 10:00:00" +%s

macOS
date -j -f "%Y-%m-%d %H:%M:%S" "2024-04-28 10:00:00" +%s

5.1.4 Session Filtering

- 88/101 - © Flussonic 2025

Combined Filters

Active sessions for specific subscriber:

Channel sessions for last 24 hours:

5.1.5 Typical Use Cases

Scenario 1: Real-time Monitoring

Task: Display dashboard with current viewers

Solution:

Python version with Prometheus metrics:

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?subscriberId=sKl9SW3AAAE.&active=true" \
 -H "X-Auth-Token: your-api-key"

Current time minus 24 hours
TIMESTAMP_24H_AGO=$(date -d '24 hours ago' +%s)

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?channelId=chKl9SW3AAAE.&opened_at_gte=$TIMESTAMP_24H_AGO" \
 -H "X-Auth-Token: your-api-key"

#!/bin/bash
realtime-dashboard.sh

API_URL="https://catena.example.com/tv-management/api/v1"
API_KEY="your-api-key"

while true; do
 # Get active sessions
 RESPONSE=$(curl -s -X GET "$API_URL/play-sessions?active=true" \
 -H "X-Auth-Token: $API_KEY")

 # Total viewers
 TOTAL_VIEWERS=$(echo $RESPONSE | jq '.sessions | length')

 # Top-5 popular channels
 TOP_CHANNELS=$(echo $RESPONSE | jq -r '.sessions | group_by(.channelName) |
 map({channel: .[0].channelName, viewers: length}) |
 sort_by(.viewers) | reverse | .[0:5]')

 clear
 echo "=== Current Viewers ==="
 echo "Total: $TOTAL_VIEWERS"
 echo ""
 echo "Top channels:"
 echo "$TOP_CHANNELS" | jq -r '.[] | "\(.channel): \(.viewers) viewers"'

 sleep 10
done

import requests
import time
from prometheus_client import Gauge, start_http_server

Metrics
active_sessions = Gauge('catena_active_sessions', 'Number of active sessions')
channel_viewers = Gauge('catena_channel_viewers', 'Viewers per channel', ['channel'])

API_URL = "https://catena.example.com/tv-management/api/v1"
API_KEY = "your-api-key"

def update_metrics():
 response = requests.get(
 f"{API_URL}/play-sessions?active=true",
 headers={"X-Auth-Token": API_KEY}
)

 sessions = response.json()['sessions']

 # Update total count
 active_sessions.set(len(sessions))

 # Count by channels
 channels = {}
 for session in sessions:
 channel = session['channelName']
 channels[channel] = channels.get(channel, 0) + 1

 # Update channel metrics

5.1.5 Typical Use Cases

- 89/101 - © Flussonic 2025

Scenario 2: Subscriber Issue Debugging

Task: Subscriber complains they can't watch channel

Debugging steps:

Check subscriber's active sessions:

Analysis: - If no sessions — authorization or network issue - If session exists — check updatedAt (recently updated?) - Check IP and userAgent —

match subscriber's device?

Check recent session history:

What to look for: - Frequent reconnections (many short sessions) - Low data transfer (streaming issues) - Different IP addresses (subscriber

switching networks)

Check if subscriber can watch specific channel:

5.1.6 Best Practices

Periodic Data Collection

Recommendations:

Active sessions: poll every 30-60 seconds for monitoring

History: collect once daily for analysis

Archiving: move old data (>30 days) to cold storage

Example cron jobs:

 for channel, count in channels.items():
 channel_viewers.labels(channel=channel).set(count)

if __name__ == '__main__':
 # Start HTTP server for Prometheus
 start_http_server(8000)

 while True:
 update_metrics()
 time.sleep(30)

1.

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?subscriberId=sKl9SW3AAAE.&active=true" \
 -H "X-Auth-Token: your-api-key"

1.

Last 1 hour
TIMESTAMP_1H_AGO=$(date -d '1 hour ago' +%s)

curl -X GET "https://your-catena-domain.com/tv-management/api/v1/play-sessions?subscriberId=sKl9SW3AAAE.&opened_at_gte=$TIMESTAMP_1H_AGO" \
 -H "X-Auth-Token: your-api-key"

1.

Check subscriptions
curl -X GET "https://your-catena-domain.com/tv-management/api/v1/subscribers/sKl9SW3AAAE." \
 -H "X-Auth-Token: your-api-key" \
 | jq '.packages'

Check which packages have this channel
curl -X GET "https://your-catena-domain.com/tv-management/api/v1/channels/chKl9SW3AAAE." \
 -H "X-Auth-Token: your-api-key" \
 | jq '.packages'

•

•

•

Every minute — monitor active sessions
*/1 * * * * /usr/local/bin/monitor-active-sessions.sh

Every hour — collect statistics
0 * * * * /usr/local/bin/collect-hourly-stats.sh

Daily at 01:00 — generate reports
0 1 * * * /usr/local/bin/generate-daily-report.sh

5.1.6 Best Practices

- 90/101 - © Flussonic 2025

Query Optimization

Use filters to reduce data volume:

5.1.7 Troubleshooting

Sessions Not Created

Problem: Subscribers watching but sessions don't appear in API

Possible causes:

Streaming server not integrated with Management API

Incorrect webhook configuration on streaming server

Network issues between servers

Solution:

Check streaming server (Flussonic) configuration

Ensure webhook configured for Management API

Check streaming server logs for errors

Sessions Not Closing

Problem: Sessions remain active after viewing stopped

Causes:

Subscriber closed app without proper stream stop

Network connection lost

Streaming server didn't send closing webhook

Solution:

Sessions have timeout (usually 5-10 minutes of inactivity)

Check updatedAt field — if not updated recently, session is "dead"

Configure automatic cleanup of "stuck" sessions

5.1.8 See Also

Subscriber Management — creating and configuring accounts

Channel Management — setting up TV channels

Operations Log — system action audit

Portal Management — data isolation between portals

BAD — get all sessions
curl -X GET "$API_URL/play-sessions"

GOOD — only active
curl -X GET "$API_URL/play-sessions?active=true"

BETTER — active from last hour
TIMESTAMP_1H=$(date -d '1 hour ago' +%s)
curl -X GET "$API_URL/play-sessions?active=true&opened_at_gte=$TIMESTAMP_1H"

1.

2.

3.

1.

2.

3.

•

•

•

•

•

•

•

•

•

•

5.1.7 Troubleshooting

- 91/101 - © Flussonic 2025

5.2 Operations Log

Operations log is a complete audit log of all actions with subscribers, packages, and subscriptions in Catena. Every change is recorded with a

timestamp, enabling history tracking and billing calculations.

5.2.1 What is an Operation

An operation is a record of a specific action performed in the system. Each operation contains information about what was done, when, and with

which objects.

Why operations log is needed:

 Revenue calculation — counting created and cancelled subscriptions for billing

 Action audit — who, what, and when did in the system

 Problem debugging — change history to identify causes

 Business analytics — growth metrics, churn rate, popular packages

 Security — tracking suspicious actions

 Compliance — evidence for regulators and auditors

What is recorded:

5.2.2 Operation Types

Subscriber Operations

autoCreateSubscriber — automatic subscriber creation

Happens on first SMS login (if auto-registration enabled)

System creates account "on the fly"

May automatically connect free packages

createSubscriber — manual subscriber creation

Administrator or billing created account

Via web interface or Management API

Usually followed by package connection

deleteSubscriber — subscriber deletion

Complete account removal

Automatically cancels all subscriptions

Irreversible action

disableSubscriber — subscriber blocking

Temporary access blocking

Subscriptions preserved but viewing access blocked

Used for non-payment, rule violations

•

•

•

•

•

•

Subscription creation → Operation createPackageSubscriber
 ↓
Billing period start
 ↓
Subscription cancellation → Operation deletePackageSubscriber
 ↓
Cost calculation = (cancel date - create date) × price

•

•

•

•

•

•

•

•

•

•

•

•

5.2 Operations Log

- 92/101 - © Flussonic 2025

enableSubscriber — subscriber unblocking

Access restoration after blocking

Subscriptions remain active

Subscription Operations

createPackageSubscriber — subscription creation

Package connection to subscriber

Key billing operation — paid period start

Records subscription start date

deletePackageSubscriber — subscription deletion

Package disconnection from subscriber

Key billing operation — paid period end

Used for cost calculation

Package Operations

createPackage — package creation

New tariff plan created

Audit for tracking product line changes

deletePackage — package deletion

Package removed from system

All subscriptions to it must be cancelled beforehand

5.2.3 Operation Structure

Main Fields

operationId — unique operation identifier

Format: base64-encoded Snowflake ID

Example: oKl9SW3AAAE.

Generated automatically when creating record

type — operation type

One of predefined types (see above)

Used for filtering and grouping

Example: createPackageSubscriber

portalId — portal identifier

Which portal the operation relates to

Used for data isolation between portals

Example: pKl9SW3AAAE.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.3 Operation Structure

- 93/101 - © Flussonic 2025

subscriberId — subscriber identifier (optional)

Present in subscriber-related operations

Null for package operations

Example: sKl9SW3AAAE.

packageId — package identifier (optional)

Present in package-related operations

Null for subscriber create/delete operations

Example: pkKl9SW3AAAE.

createdAt — operation creation time

Format: ISO 8601 timestamp

Example: 2024-10-16T10:00:00Z

Key field for billing — exact event date

updatedAt — last update time

Usually matches createdAt

May differ if operation was modified

Example: 2024-10-16T10:00:00Z

payload — additional operation data

JSON object with operation details

Content depends on operation type

Examples:

{"subscriberId": "sKl9SW3AAAE.", "name": "John Doe"}

{"packageId": "pkKl9SW3AAAE.", "packageName": "premium"}

5.2.4 Getting Operations List

Basic Request

Get all operations:

Response:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

curl -X GET https://your-catena-domain.com/tv-management/api/v1/operations \
 -H "X-Auth-Token: your-api-key"

{
 "operations": [
 {
 "operationId": "opKl9SW3AAAE.",
 "type": "createSubscriber",
 "portalId": "pKl9SW3AAAE.",
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": null,
 "createdAt": "2024-10-16T10:00:00Z",
 "updatedAt": "2024-10-16T10:00:00Z",
 "payload": {
 "name": "John Doe",
 "phone": "+12345678901"
 }
 },
 {
 "operationId": "opKl9SW3AAAB.",
 "type": "createPackageSubscriber",
 "portalId": "pKl9SW3AAAE.",
 "subscriberId": "sKl9SW3AAAE.",
 "packageId": "pkKl9SW3AAAE.",
 "createdAt": "2024-10-16T10:05:00Z",
 "updatedAt": "2024-10-16T10:05:00Z",
 "payload": {

5.2.4 Getting Operations List

- 94/101 - © Flussonic 2025

5.2.5 Billing Calculations

Revenue Calculation for Period

Task: Calculate revenue for October 2024

Python example:

5.2.6 Best Practices

Data Retention

Recommendations:

In Catena: Store operations minimum 90 days

In billing DB: Store forever for tax reporting

Archiving: Export old operations to cold storage (S3, glacier)

Duplicate Prevention

Use idempotent processing to avoid duplicate billing

5.2.7 See Also

Subscriber Management — subscriber creation records operations

Subscription Management — subscription create/delete

 "packageName": "premium"
 }
 }
],
 "next": "cursor-for-next-page"
}

import requests
from datetime import datetime
from collections import defaultdict

API_URL = "https://catena.example.com/tv-management/api/v1"
API_KEY = "your-api-key"

Package prices (store in your billing DB)
PACKAGE_PRICES = {
 "basicKl9SW3AAAE.": 10.0, # $10/month
 "premiumKl9SW3AAAE.": 20.0, # $20/month
 "sportKl9SW3AAAE.": 15.0 # $15/month
}

def calculate_monthly_revenue(year, month):
 """Calculate revenue for month based on operations"""

 start_date = f"{year}-{month:02d}-01"
 if month == 12:
 end_date = f"{year + 1}-01-01"
 else:
 end_date = f"{year}-{month + 1:02d}-01"

 # Get subscription creations
 subscriptions = get_operations(
 type="createPackageSubscriber",
 created_at_gte=start_date,
 created_at_lt=end_date
)

 # Calculate revenue
 total_revenue = 0
 for op in subscriptions:
 package_id = op['packageId']
 price = PACKAGE_PRICES.get(package_id, 0)
 total_revenue += price

 return total_revenue

revenue = calculate_monthly_revenue(2024, 10)
print(f"Revenue for October 2024: ${revenue:.2f}")

•

•

•

•

•

5.2.5 Billing Calculations

- 95/101 - © Flussonic 2025

Package Management — package operations

Play Sessions — additional data for traffic billing

•

•

5.2.7 See Also

- 96/101 - © Flussonic 2025

6. Client Applications

6.1 Catena Android App User Guide

Welcome to the Catena app for watching television on Android!

6.1.1 Table of Contents

Installation

Logging In

Watching Channels

Video Playback

Viewing Archive

Useful Tips

Troubleshooting

6.1.2 Installation

System Requirements

Operating System: Android 5.0 (Lollipop) or higher

Minimum RAM: 2 GB

Free Space: 50 MB

Internet Connection: Wi-Fi or mobile network (recommended 5 Mbps+)

Install from Google Play Store

Open Google Play Store on your Android device

Search for "Catena" or "com.flussonic.catena"

Find Catena app by Flussonic developer

Tap "Install" button

Wait for installation to complete

Tap "Open" to launch the app

Direct link: Catena on Google Play Store

Install from APK File

If the app is not available in Google Play Store in your region:

Download APK file from official website or get it from your service administrator

In Android settings, enable "Install from unknown sources"

Path: Settings → Security → Unknown sources

Open downloaded APK file

Tap "Install"

Launch the app after installation

Important: Only install APK from trusted sources!

1.

2.

3.

4.

5.

6.

7.

•

•

•

•

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

5.

6.

6. Client Applications

- 97/101 - © Flussonic 2025

https://play.google.com/store/apps/details?id=com.flussonic.catena

6.1.3 Logging In

First Launch

On first launch, you need to log in using your phone number.

STEP 1: ENTER PHONE NUMBER

Launch Catena app

Select country code from dropdown (e.g., "+1" for USA)

Enter phone number without country code

Example: for number +1 234 567-8901 enter 2345678901

Tap "Send Code" button (or press Enter on keyboard)

STEP 2: ENTER SMS CODE

You will receive SMS with 4-digit code

Enter this code in "SMS code" field

Code is verified automatically when entering 4th digit

Or tap "Confirm" button

SUCCESSFUL LOGIN

After successful login: - Your access token is saved automatically - Next time you launch, login happens automatically - You will arrive at main screen

with channel list

Logging Out

To log out of the app: 1. On main screen, tap "Logout" button in top-right corner 2. You will return to login screen

6.1.4 Watching Channels

Channel Selection

On main screen you will see list of all available TV channels.

For each channel displayed: - Channel name - Current program (what's on now) - Next program (what's coming up)

START WATCHING

Find channel you're interested in the list

Tap on channel - playback screen will open

Video will start playing automatically

Refresh Channel List

To update channel and program information: - Pull screen down (swipe down) on main screen - Channel list and programs will refresh

6.1.5 Video Playback

Playback Controls

In portrait orientation (vertical): - Tap on screen - playback controls will appear - Standard buttons available: - Pause/Play - Rewind - Fast

forward

1.

2.

3.

4.

5.

1.

2.

3.

4.

1.

2.

3.

6.1.3 Logging In

- 98/101 - © Flussonic 2025

In landscape orientation (horizontal): - Automatically switches to fullscreen mode - System panels hide for maximum comfort - Tap on screen to

show controls - Controls automatically hide after 3 seconds

Channel Switching

METHOD 1: SWIPE UP/DOWN (IN PORTRAIT MODE)

Swipe up (swipe finger up on screen) → switch to next channel

Swipe down (swipe finger down on screen) → switch to previous channel

When starting swipe you will see: - Top: previous channel name - Bottom: next channel name

METHOD 2: "NEXT CHANNEL" BUTTON

At bottom of playback screen there's a "Switch to [channel name]" button

Tap it to switch to next channel

Screen Rotation

Portrait mode: Video player occupies top part of screen, program schedule shown below

Landscape mode: Fullscreen video playback, all interface elements hide

6.1.6 Viewing Archive

What is Archive?

Archive allows viewing programs that already aired. You can watch shows that were broadcast earlier.

How to Open Program Guide (EPG)

On playback screen in portrait mode: - Scroll down - there you'll see program list for current channel - List shows programs: - Already aired (past) -

Currently airing (highlighted) - Scheduled for later (future)

Watch Program from Archive

On playback screen scroll down to program list

Find show you want to watch

Tap on program from list

Program will start playing from beginning

Program Information

For each program displayed: - Start time and end time - Program title - Description (if available) - Current program is highlighted visually

Automatic Switching

When one program ends, next program automatically starts

You can watch channel continuously, programs will switch automatically

On automatic switch, next program starts from beginning

Current Playback Time

Top of screen shows: - Exact playback time - which moment of recording you're watching - This helps navigate when viewing archive

1.

2.

•

•

•

•

1.

2.

3.

4.

•

•

•

6.1.6 Viewing Archive

- 99/101 - © Flussonic 2025

6.1.7 Useful Tips

For Smartphones

Rotate phone horizontally for fullscreen viewing

Pull down on main screen to refresh channel list

Swipe up/down on player for quick channel switching

Auto Login

After first successful login, token is saved

Next time you launch app, login happens automatically

You don't need to enter phone number and code each time

Playback Quality

App automatically adjusts quality to your internet speed

For best quality use Wi-Fi connection

Gesture Controls

Single tap on screen - show/hide controls

Swipe up - next channel

Swipe down - previous channel

6.1.8 Troubleshooting

SMS Code Not Received

Check entered phone number is correct

Make sure correct country code is selected

Wait 1-2 minutes - sometimes SMS arrives with delay

Try requesting code again

Error "sms code doesn't match"

Check entered code from SMS is correct

Code valid for limited time - request new code if much time passed

Video Not Playing

Check internet connection

Try switching to another channel

Close and reopen app

Ensure you have access to selected channel

Channel List Empty

Check internet connection

Pull screen down to refresh

Log out and log in again

1.

2.

3.

•

•

•

•

•

•

•

•

1.

2.

3.

4.

•

•

1.

2.

3.

4.

1.

2.

3.

6.1.7 Useful Tips

- 100/101 - © Flussonic 2025

Contact administrator - perhaps no channels configured for your account

Video Stutters or Buffers

Check internet connection speed

Connect to Wi-Fi instead of mobile internet

Close other apps using internet

Try viewing at different time of day

6.1.9 Support

If you have issues with the app not described in this guide: - Contact your TV service administrator - Provide exact problem description - Report your

device model and Android version

Enjoy watching!

4.

1.

2.

3.

4.

6.1.9 Support

- 101/101 - © Flussonic 2025

	Catena Manual
	1. Products
	2. Catena
	2.0.1 Catena
	Target Audience
	Key Capabilities
	Content Management
	Subscriber Management
	Monitoring and Analytics
	Administration

	Web Interface and API
	Web Interface (UI)
	Management API
	Typical Use Cases

	Documentation Structure

	2.1 Portal Management
	2.1.1 What is a Portal
	2.1.2 Managing Multiple Portals
	Multi-tenancy Concept
	One Manager — Multiple Portals

	2.1.3 Main Portal Parameters
	Technical Parameters
	Branding Parameters
	Free Packages

	2.1.4 Getting Portal Information
	Via Web Interface
	Via Management API

	2.1.5 Editing a Portal
	Via Web Interface
	Via Management API

	2.1.6 API Key Management
	API Key Security
	API Key Regeneration

	2.1.7 Managing Free Packages
	Adding Free Package
	Removing Free Package

	2.1.8 Typical Use Cases
	Scenario 1: Multiple Brands on One Platform
	Scenario 2: White-label Solution for Partners
	Scenario 3: Geographic Separation
	Scenario 4: Testing Environment

	2.1.9 Branded Mobile Applications
	Branded App Concept
	App Creation Process

	2.1.10 Shared Infrastructure for Portals
	Shared Streaming Servers
	Shared Channels for Multiple Portals

	2.1.11 Best Practices
	Portal Naming
	Content Organization
	Security
	Monitoring

	2.1.12 Troubleshooting
	Subscribers Cannot Login
	Channels Won't Play
	API Returns 401 Unauthorized
	Two Portals See Each Other's Subscribers

	2.1.13 See Also

	2.2 Portal Manager Management
	2.2.1 What is a Manager
	2.2.2 Portal Owner vs Managers
	Portal Owner
	Regular Managers

	2.2.3 Permission System
	Access Levels

	2.2.4 Creating a Manager
	Via Management API

	2.2.5 Login
	Authentication Process

	2.2.6 Best Practices
	Password Security
	Permission Management
	Offboarding

	2.2.7 Troubleshooting
	Cannot Login
	Cannot Change Portal Owner

	2.2.8 See Also

	3. Content Management
	3.1 TV Channel Management
	3.1.1 What is a Channel in Catena
	3.1.2 Main Channel Parameters
	Technical Parameters
	Display Parameters
	EPG Integration

	3.1.3 Creating a Channel
	Via Web Interface
	Via Management API

	3.1.4 Viewing Channel List
	Via Web Interface
	Via Management API

	3.1.5 Editing a Channel
	Via Web Interface
	Via Management API

	3.1.6 Uploading and Getting Logo
	Uploading Logo via API
	Getting Logo

	3.1.7 Deleting a Channel
	Via Web Interface
	Via Management API

	3.1.8 Channel-Package Relationship
	3.1.9 Channel-EPG Relationship
	How EPG Integration Works
	Channel Mapping

	3.1.10 Typical Use Cases
	Launching a New Channel
	Bulk Adding Channels
	Updating EPG for Channels
	Channel Rebranding

	3.1.11 Best Practices
	Channel Naming
	Channel Organization
	Logo Management
	Streaming Server Integration

	3.1.12 Troubleshooting
	Channel Not Displayed in Application
	EPG Not Displayed for Channel
	"Name must be unique" Error
	Logo Won't Upload

	3.1.13 See Also

	3.2 Channel Package Management
	3.2.1 What is a Channel Package
	3.2.2 Main Package Parameters
	Technical Parameters
	Display Parameters
	Package Content

	3.2.3 Creating a Package
	Via Web Interface
	Via Management API

	3.2.4 Viewing Package List
	Via Web Interface
	Via Management API

	3.2.5 Getting Package Information
	Via Management API

	3.2.6 Editing a Package
	Via Web Interface
	Via Management API

	3.2.7 Deleting a Package
	Via Web Interface
	Via Management API

	3.2.8 Managing Package Composition
	Adding a Channel to Package
	Removing a Channel from Package
	Bulk Channel Management

	3.2.9 Assigning Packages to Subscribers
	Adding a Package to Subscriber
	Removing a Package from Subscriber

	3.2.10 Free Packages
	How It Works
	Adding Package to Free List
	Removing Package from Free List

	3.2.11 Typical Use Cases
	Creating Basic Pricing Grid
	Thematic Packages
	Regional Packages
	Temporary Promotions

	3.2.12 Best Practices
	Planning Package Structure
	Change Management
	Monitoring and Analytics
	Billing Integration

	3.2.13 Troubleshooting
	Subscriber Doesn't See Channels from Package
	Channels Are Duplicated in Subscriber's List
	Error Adding Channel to Package
	Package Won't Delete
	Free Package Not Working

	3.2.14 See Also

	3.3 EPG Source Management
	3.3.1 What is an EPG Source
	3.3.2 Main EPG Source Parameters
	Technical Parameters
	Download Parameters
	Last Download Result

	3.3.3 Creating an EPG Source
	Via Web Interface
	Via Management API

	3.3.4 Viewing EPG Source List
	Via Web Interface
	Via Management API

	3.3.5 Getting Source Information
	Via Management API

	3.3.6 Editing an EPG Source
	Via Web Interface
	Via Management API

	3.3.7 Forced EPG Update
	Via Web Interface
	Via Management API

	3.3.8 Deleting an EPG Source
	Via Web Interface
	Via Management API

	3.3.9 Viewing Programs from EPG Source
	Getting Programs via API

	3.3.10 Viewing EPG Update History
	Automatic EPG Updates
	Viewing History via Web Interface
	Getting History via API
	Update History Fields
	Analyzing Update History

	3.3.11 Linking Channels to EPG Source
	3.3.12 EPG XML Format
	XMLTV Structure
	Supported Fields

	3.3.13 Typical Use Cases
	Connecting Standard XMLTV Provider
	Using Multiple EPG Sources
	Monitoring EPG Updates

	3.3.14 Best Practices
	Choosing EPG Provider
	Configuring Update Period
	Error Handling
	Performance Optimization

	3.3.15 Troubleshooting
	EPG Not Loading
	Programs Not Displayed in Application
	Incomplete Program Data
	Timezone Mismatch
	Duplicate Programs

	3.3.16 See Also

	4. Subscriber Management
	4.1 Subscriber Management
	4.1.1 What is a Subscriber
	4.1.2 Main Subscriber Parameters
	Technical Parameters
	Personal Information
	Access Parameters

	4.1.3 Subscriber Authentication
	SMS Login (Primary Method)
	Automatic Subscriber Creation

	4.1.4 Creating a Subscriber
	Via Web Interface
	Via Management API

	4.1.5 Viewing Subscriber List
	Via Web Interface
	Via Management API

	4.1.6 Getting Subscriber Information
	Via Management API

	4.1.7 Editing a Subscriber
	Via Web Interface
	Via Management API

	4.1.8 Managing Package Subscriptions
	Connecting Package to Subscriber
	Disconnecting Package from Subscriber
	Bulk Subscription Management

	4.1.9 Deleting a Subscriber
	Via Web Interface
	Via Management API

	4.1.10 Monitoring Subscriber Activity
	Viewing Playback Sessions
	Operations Log

	4.1.11 Typical Use Cases
	Creating New Subscriber with Basic Package
	Upgrading Subscriber to Premium Package
	Integration with Billing System
	Bulk Subscriber Migration

	4.1.12 Best Practices
	Managing Phone Numbers
	Security
	Subscription Management
	Subscriber Communication

	4.1.13 Troubleshooting
	Subscriber Cannot Login via SMS
	Subscriber Doesn't See Channels
	Errors When Connecting Package
	Duplicate Phone Numbers

	4.1.14 See Also

	4.2 Subscription Management
	4.2.1 What is a Subscription
	4.2.2 Subscription Lifecycle
	Creating a Subscription
	Active Subscription
	Cancelling a Subscription

	4.2.3 Creating a Subscription
	Via Web Interface
	Via Management API

	4.2.4 Deleting a Subscription
	Via Web Interface
	Via Management API

	4.2.5 Viewing Subscriptions
	Specific Subscriber Subscriptions
	Specific Package Subscribers
	Subscription History via Operations Log

	4.2.6 Portal Free Packages
	Free Packages Concept
	Managing Free Packages

	4.2.7 Billing System Integration
	Integration Architecture
	Integration Examples
	Example 1: Webhook on Payment
	Example 2: Periodic Synchronization
	Example 3: Trial Period

	4.2.8 Typical Use Cases
	Auto-Renewal Subscription
	Family Subscription
	Temporary Promotion
	Plan Downgrade

	4.2.9 Best Practices
	Package Design
	Error Handling
	State Synchronization
	Logging and Monitoring
	Subscriber Notifications

	4.2.10 Troubleshooting
	Subscription Not Creating
	Subscriber Doesn't See Channels After Subscription Creation
	Subscription Not Deleting
	Discrepancies Between Billing and Catena

	4.2.11 See Also

	5. Monitoring
	5.1 Play Session Monitoring
	5.1.1 What is a Play Session
	5.1.2 Play Session Structure
	Main Fields

	5.1.3 Getting Session List
	Basic Request
	Pagination

	5.1.4 Session Filtering
	By Subscriber
	By Channel
	By Activity Status
	By Time
	Combined Filters

	5.1.5 Typical Use Cases
	Scenario 1: Real-time Monitoring
	Scenario 2: Subscriber Issue Debugging

	5.1.6 Best Practices
	Periodic Data Collection
	Query Optimization

	5.1.7 Troubleshooting
	Sessions Not Created
	Sessions Not Closing

	5.1.8 See Also

	5.2 Operations Log
	5.2.1 What is an Operation
	5.2.2 Operation Types
	Subscriber Operations
	Subscription Operations
	Package Operations

	5.2.3 Operation Structure
	Main Fields

	5.2.4 Getting Operations List
	Basic Request

	5.2.5 Billing Calculations
	Revenue Calculation for Period

	5.2.6 Best Practices
	Data Retention
	Duplicate Prevention

	5.2.7 See Also

	6. Client Applications
	6.1 Catena Android App User Guide
	6.1.1 📱 Table of Contents
	6.1.2 Installation
	System Requirements
	Install from Google Play Store
	Install from APK File

	6.1.3 Logging In
	First Launch
	Step 1: Enter Phone Number
	Step 2: Enter SMS Code
	Successful Login

	Logging Out

	6.1.4 Watching Channels
	Channel Selection
	Start Watching

	Refresh Channel List

	6.1.5 Video Playback
	Playback Controls
	Channel Switching
	Method 1: Swipe Up/Down (in portrait mode)
	Method 2: "Next Channel" Button

	Screen Rotation

	6.1.6 Viewing Archive
	What is Archive?
	How to Open Program Guide (EPG)
	Watch Program from Archive
	Program Information
	Automatic Switching
	Current Playback Time

	6.1.7 💡 Useful Tips
	For Smartphones
	Auto Login
	Playback Quality
	Gesture Controls

	6.1.8 ❓ Troubleshooting
	SMS Code Not Received
	Error "sms code doesn't match"
	Video Not Playing
	Channel List Empty
	Video Stutters or Buffers

	6.1.9 📞 Support

